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Figure 1: The leftmost composition is generated by selecting from a dataset of 200K clip art searched with keywords: dog, tree, sun, cloud,
and flower. Unfortunately, the styles of the clip art are inconsistent. Our style similarity function can be used to re-order the results of a
search by style. The next three scenes are generated by fixing one element, and then searching for stylistically similar clip art with the above
keywords. In each case, the additional clip art were chosen from the top twelve returned results (out of thousands).

Abstract

This paper presents a method for measuring the similarity in style
between two pieces of vector art, independent of content. Similar-
ity is measured by the differences between four types of features:
color, shading, texture, and stroke. Feature weightings are learned
from crowdsourced experiments. This perceptual similarity en-
ables style-based search. Using our style-based search feature, we
demonstrate an application that allows users to create stylistically-
coherent clip art mash-ups.
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1 Introduction

Vector art is one of the most common forms of two-dimensional
computer graphics. Clip art libraries contain hundreds of thou-
sands of pieces of vector art designed to be copied into documents
and illustrations. These collections are typically tagged by ob-
ject categories; searches for common objects (e.g., “dog”) yield
huge numbers of results. However, there is another aspect of vec-
tor art that is currently much harder to search for: style. Clip art
comes from many artists and many sources, in a vast range of vi-
sual styles, including sketches, woodcuts, cartoon drawings, and
gradient-shading; some are very cartoony and whimsical, whereas
others are more professional-looking. Because clip art comes
from heterogeneous sources with very inconsistent tagging, these
datasets lack any reliable annotation of artist or style.

While simulation of depiction style has long been a focus of non-
photorealistic rendering [Gooch and Gooch 2001], little attention
has been paid to understanding style, and no good tools exist for
stylistic search or analysis in clip art datasets. Indeed, it is funda-
mentally difficult to define a simple function that describes these
different styles. But, with the recent dramatic growth in the quan-
tity of visual content available online and the rising popularity of

remixed and mashup art [Lessig 2008], stylistic search could be
valuable for many design applications.

This paper presents a style similarity function for clip art. That is,
given two pieces of clip art, our function computes a real-valued
measure of their style similarity, independent of content (Figure 1).
We demonstrate style-based search, where clip art search results
are sorted by similarity to a query artwork. We describe a clip art
mashup application that uses style-based search to help users com-
bine multiple pieces of stylistically-coherent clip art into a compo-
sition. For example, if a user has already placed a house and tree
in a sketchy pen style onto the canvas, and then searches for a dog,
our application re-orders search results so that dogs of a similarly
sketchy pen style are shown first.

We compute our style distance function using a combination of
crowdsourcing and machine learning. We gathered a stylistically-
diverse collection of clip art. Then, for a large selection of clip
art triplets, we gathered Mechanical Turk (MTurk) ratings of the
form “Is clip art A more similar in style to clip art B or C?” We
then learned a model of stylistic similarity from these ratings. The
model is based on a set of features that we observe to be descriptive
of the style of vector art. In total we compute 169 features in four
categories: color, shading, texture, and stroke. The similarity func-
tion is a weighted L2 distance of the feature vectors; the weights
are learned by maximizing the probability of the MTurk ratings.
Learning with a sparsity prior produces a final weighting with 78
non-zero weights. We numerically evaluate the performance of our
distance function on separate test data. We also perform user stud-
ies in which workers create mash-ups with and without style-based
search. We find that raters judge mash-ups created with style-based
search to be more stylistically coherent and generally preferable.

2 Related Work

Though there has been considerable effort in computer graphics
on stylistic rendering, there has been less work in the analysis of
artistic style. Willats and Durand [2005] provide an overview of
the elements of pictorial style found in 2D illustrations. One ap-
proach to the algorithmic analysis of style is to learn a genera-
tive model; that is, a model that learns to create new examples
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Figure 2: For each feature category we show two pieces of clip whose style is very different. The color example contrasts a colorful illustration
from a monochrome one. The shading example shows a gradient-shaded illustraton next to one with regions of constant color. The texture
example shows an image with artistic patterns next to a woodcut illustration with more stochastic patterns. Finally, the stroke example pairs
a sketchy illustration with lines of varying width next to smooth contours of constant width.

of a style from scratch, such as generating new typefaces [Tenen-
baum and Freeman 2000], and learning 3D hatching styles from
examples [Kalogerakis et al. 2012]. A second class of approaches
transfer styles from examples, such as transferring painting styles
[Hertzmann et al. 2001], photographic styles [Bae et al. 2006], or
curve styles of 2D shapes [Li et al. 2013]. Our work focuses on a
different problem, namely, perceptual measures of stylistic similar-
ity, rather than synthesis. To our knowledge, there is no previous
work on perceptual similarity of vector art. Moreover, the above
methods are not directly applicable. A generative model could the-
oretically be used to compute stylistic similarity; however, creating
a generative model of clip art style from examples would be ex-
traordinarily difficult.

Though image search and retrieval is a standard problem in vision
and image analysis [Datta et al. 2008], recognition based on style is
rare. Murray et al. [2012] classify photographs according to a few
photographic styles. There are more examples in other domains;
style similarity functions are used to recommend music [Aucou-
turier and Pachet 2002] and films [Bell and Koren 2007] based on
examples of preferences. Shamir et al. [2010] describe style recog-
nition for paintings. Doersch et al. [2012] recognize the style of
street scenes that visually distinguish different cities. Our method
instead focuses on styles of vector art.

The most related work to ours is a method for retrieval of sketches
of similar style from an art dataset [Hurtut et al. 2011]. They pro-
pose features computed from stroke contours which are first ex-
tracted from the image to describe the style of line drawings. Their
method only applies to black and white line drawings, whereas our
method can also measure differences in color, shading, and texture.
Also, our technical approach is different in that we collect data on
the human perception of style, and fit our style similarity function
to this data.

Finally, our mashup application is similar in motivation to re-
cent work that supports search of photo databases for visually
consistent content that can be combined into composites. Photo
Clip Art [Lalonde et al. 2007] find objects in photos whose light-
ing and perspective are consistent with a target scene, while
Sketch2Photo [Chen et al. 2009] generates photo composites from
sketches while ensuring that the photo elements are visually consis-
tent.

3 Clip Art Style Features

The first step in building a style similarity function is to define the
numerical features that identify and distinguish clip art style. Al-
though it is difficult to specify the exact characteristics that define
style, there are a series of pictorial cues that can be used to differ-
entiate one style from another. These cues include basic visual at-
tributes like color, shading, and texture, as well as the actual marks
such as lines, strokes, and regions [Durand 2002; Willats and Du-
rand 2005]. Note that we do not need to decide a priori how these
features differentiate style, or their relative weights; our goal is to

create an overcomplete set of features that can be used by the learn-
ing algorithm to fit our similarity function to data.

Our features are computed on bitmaps rather than vector descrip-
tions (e.g., SVG) of clip art for two reasons. First, computing on
bitmaps gives us the flexibility to include clip art whether or not a
vector version is available. Second, we observed a surprising vari-
ety of vector descriptions of similar content. For example, a simple
black stroke could be defined with line, path, or polygon primitives,
or even worse, be the result of adding a smaller foreground region
to a black background region. Converting these representations into
a consistent vector format is a research challenge by itself.

We identify four main aspects which we believe best characterize
styles in clip art: color, shading, texture, and strokes. Together
these form a 169-dimensional feature vector x for any individual
piece of clip art. Figure 2 shows some representative examples of
clip art whose styles are very different along each of the identified
aspects. We now describe at a high level the list of features that
form our feature vector; details are given in the Appendix.

Color. These features distinguish between different styles of
color use; some styles we observe include black-and-white,
monochrome, colorful, muted, and bright/saturated colors. Note
that these statistics reflect styles of color usage rather than the indi-
vidual colors used. The color features are implemented as statistics
on the distribution of colors, including means and standard devia-
tions of saturation, luminance, and hue, several measures of color-
fulness, and the number of dominant colors. Finally, the percentage
of gray and black pixels is useful to differentiate black and white
from color.

Shading. These features distinguish types of shading. Some
styles have a very cartoonish look, with sharp, simple color tran-
sitions; others have more realistic materials with smooth gradients.
We describe shading with histograms of both color and grayscale
gradients. The former captures the overall appearance and materi-
als of colored images, while the latter captures transitions between
shading and stroke lines, if any.

Texture. These features capture the presence of repeated patterns
over the image. Texture defines the look of a depicted object at a
small scale, and gives an intuition of how an object in an image
would feel when touched. Texture features have a long history in
computer vision; we use Local Binary Patterns (LBP) [Ojala et al.
2002; Zhu et al. 2010] and Haralick features [1973].

Strokes. The types of strokes used are a significant element of
clip art style [Hurtut et al. 2011]. Clip art strokes typically vary in
texture, thickness, and weight. Some of these characteristics are al-
ready captured by the LBP features, like thickness or uniformity of
the stroke lines. We add additional stroke features using the Stroke
Width Transform (SWT) [Epshtein et al. 2010], which was origi-
nally developed to recognize text in natural images. The SWT is a
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Figure 3: Screenshots of our MTurk similarity collection interface.
Left: An example given to users at the beginning of the test to make
sure they understood the question asked. Right: An actual compar-
ison triplet.

local operator which approximates the width of the stroke at each
pixel.

4 Collecting Similarity Information

We use two sources of clip art to train our models: clip art from Art
Explosion1, a commercial collection of over 200,000 pieces of clip
art, and a collection of 3,600 clip art pieces that is included with
Microsoft Office. For the former collection we used crowdsourcing
to collect data on stylistic similarity. In contrast, the latter, smaller
collection is already organized into groups of stylistic similarity.

We manually selected 1000 images from the Art Explosion dataset
that cover a wide range of styles and subjects. We used Mechan-
ical Turk (MTurk) raters to collect style information. Each test (a
HIT in Mechanical Turk terminology) consisted of fifty questions.
We gathered data in the form of relative comparisons [McFee and
Lanckriet 2011; Schultz and Joachims 2003] since they are much
easier for human raters to provide than numerical distances. Each
question showed three pieces of clip art A, B, and C, and the
MTurk rater is asked: “Is A more similar to B or to C?” (Fig-
ure 3.) For the Microsoft data, we automatically generated relative
comparisons through random sampling constrained so that two of
the three samples in each relative comparison come from the same
style group.

Each HIT was preceded by a short training session that included
a few trial relative comparisons with obvious answers; the users
could only access the real test once they correctly answered all the
trial questions. A total of 313 users took part, 51.4% female. 56.5%
declared some artistic experience, and an additional 7.3% claimed
some professional design experience. The duration of each HIT was
approximately ten minutes, for which we paid $0.30. Five control
questions were included in each HIT; HITs with two errors in the
control questions were rejected, with a rejection rate of 21.5%.

5 Learning Similarity

This section describes our approach for learning stylistic similarity
based on the feature vector defined in Section 3 and the training
data from Section 4. Our learning approach uses a combination of
previous techniques that works well for our application. Let x and
y be the feature vectors for two pieces of clip art. We aim to learn
a Euclidean distance metric

d(x,y) =‖ x− y ‖W=
√

(x− y)TW(x− y) (1)

parameterized by a diagonal matrix W. This problem is well-
studied and known as metric learning [Kulis 2013; Schultz and
Joachims 2003]. Our problem is further complicated by the fact that

1www.novadevelopment.com

crowdsourced relative comparisons are not always reliable; there
are several approaches to modeling worker reliability both in clas-
sification [Welinder et al. 2010] and search ranking [Chen et al.
2013]. We minimize this reliability problem in two ways. First, we
use a number of control and training questions to reject bad work-
ers. Second, we use a logistic formulation of the probability of
each rating [Tamuz et al. 2011] that expects more noise for relative
comparisons with less clear answers.

Specifically, we use the metric learning approach of Donovan et
al. [2014], who adapt the logistic formulation of Tamuz et al. [2011]
to the scenario of learning from features: Given clip arts A, B,
and C, we define q = 1 if the rater states that A and B are more
similar, and q = 0 if the rater states A and C are more similar.
We parameterize the model by the diagonal of the weight matrix:
w = diag(W). We model the probability that a user rates q = 1
given the tuple as:

PA
BC(q = 1) = σ(d(xA,xC)− d(xA,xB)) (2)

σ(x) = 1/(1 + exp(−x)) (3)

In addition to this model, we aim to regularize and sparsify the
weight vector. We thus assume a Laplacian prior on the weights:

p(w) ∝ exp(−λ||w||1) (4)

where λ is a regularization weight. Given a set of Turker ratings
D = {(Ai, Bi, Ci, qi)}, we learn the weights w by Maximum A
Posteriori estimation, which entails minimizing the following ob-
jective function:

E(w) = −
|D|∑
i=1

log
(
PAi
BiCi

(qi)
)
+ λ||w||1 (5)

where i indexes over the training tuples. We perform optimization
using L-BFGS [Zhu et al. 1997].

We set the regularization weight λ by five-fold cross-validation on
the training set. After training, all weights with w < 0.02 are set to
zero.

6 Similarity Function Evaluation

We now evaluate the influence of the regularization term, the per-
formance of the learning process, and the quality of the training
data. The training set includes 25,540 tuples gathered via Amazon
Mechanical Turk and 25,000 tuples generated from the labeled data
from Microsoft.

6.1 Feature Selection

The use of L1 regularization encourages a sparse set of weights.
Through cross-validation, the regularization weight was set to λ =
1.3. After the thresholding step, we reach a final weight vector
with 78 non-zero weights; the 91 zero-weight features can be ig-
nored. The weights are given in the Supplemental Material. Some
features are deemed irrelevant (e.g., the entropy of both luminance
and color), while others can be covered with a smaller set of fea-
tures (e.g., by using a few bins of LBP instead of all). The highest
weighted feature is the number of unique hues; the number of RGB
colors is the second highest. Several bins of the LBP, Haralick,
Color Gradient, and Stroke width features are also highly weighted.
The weights show that these high-dimensional features can be sim-
plified to lower-dimensional combinations for our application.
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MTurk MS
Raw Majority

Learned Weights 0.72 0.81 0.95
Uniform Weights 0.68 0.75 0.94
Humans 0.68 0.74 N/A
Oracle 0.83 1 N/A

Table 1: Accuracy of our method (with and without training)
and two baselines, on both the MTurk and Microsoft testing data.
Higher values are better (see text for details).

MTurk MS
Raw Majority

Learned Weights (MTurk + MS) 1.75 1.57 1.18
Learned Weights (MTurk only) 1.76 1.64 1.30
Learned Weights (MS only) 2.52 1.77 1.11
Uniform Weights 1.83 1.73 1.39

Table 2: Perplexity of our method on both the MTurk and Microsoft
testing data. Lower values are better (see text for details).

6.2 Evaluation on a Testing Set

We gathered a new set of relative comparisons to form a separate
testing set to evaluate our model. We sampled 1,000 new tuples
from the Art Explosion collection, and 10,000 tuples from the Mi-
crosoft labeled data. We used MTurk to obtain 10 ratings per tuple
for the Art Explosion data; this redundancy helps us to understand
which tuples have clear answers. We removed tuples with high dis-
agreement, i.e., tuples with MTurkers split 5-5 or 6-4 in their judg-
ment of which pair is more similar. This left 633 reliable compar-
isons, each with 70% or more agreement. Disjoint training tuples
were used between the training and test sets, though both sets of
tuples used clip art pieces drawn randomly from the same clip art
collection.

We evaluate performance by two metrics on the test set: accuracy
and perplexity. Accuracy is the percentage of testing tuples cor-
rectly predicted by our method. For MTurk tuples, accuracy can
be computed in two ways: raw and majority. Raw accuracy counts
each of the 10 opinions per tuple separately; majority assumes the
majority opinion is correct and assigns all votes to the winner. So,
an ideal predictor which always chooses the majority opinion would
have a majority accuracy of 1, but a raw accuracy of less than 1 as-
suming there is disagreement between human raters. In either case,
a completely random predictor would have an accuracy of 0.5.

PerplexityQ is a standard measure of how well a probability model
predicts a sample; it takes into account the uncertainty in the model,
giving higher weight to predictions where the model outputs higher
confidence (i.e., PA

BC close to 1 or 0). It is given by

Q = 2−(lnP (T ))/|T | (6)

where P (T ) is the probability of the test set according to a given
model, computed by Equation 3 over all test tuples. The perplex-
ity is 1 for a model that makes perfect, confident predictions at all
times. The perpexity is 2 for a model that outputs 0.5 (total uncer-
tainty) for all evaluations. The perplexity is worse for a model that
makes highly confident but wrong predictions. Perplexity can also
be computed with raw and majority data.
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Figure 4: Perplexity (left) and accuracy (right) on the test data as
a function of the number of MTurk tuples used during training.

We show accuracy data in Table 1 and perplexity data in Table 2,
both for MTurk relative comparisons and Microsoft data. We show
the results of our model both with uniform weights w = [1...1]T ,
and with weights learned from training data. Note that there is no
need to separate the Microsoft data into raw and majority, since
there is no disagreement. We compare our results with two base-
lines in addition to a random baseline. The oracle predictor has ac-
cess to all the human ratings and always gives the majority opinion;
note that its raw accuracy is not 1 due to human rater disagreement.
The human accuracy is a measure of how well the average indi-
vidual human performs relative to the majority; it is computed as
an average over each human rater’s percentage of agreement with
other raters on the same tuples. Note that perplexity cannot be com-
puted for the oracle and human models since they are not probabil-
ity distributions.

For the MTurk data, the accuracy of our model is roughly equal
to average human accuracy without training; with trained weights,
our model performs better than human accuracy. Our model is able
to predict the majority opinion 81% of the time. Not surprisingly,
the oracle predictor is still significantly better than our model. Our
model is 95% accurate on the Microsoft data. This data is easier,
since in each tuple two of the clip art pieces have the same style;
tuples with three different styles (as is common in the MTurk data)
are more subjective.

We also experimented with only training on the Microsoft or MTurk
datasets. Training on only the Microsoft data performed poorly on
the MTurk data, while training on only the MTurk data performed
reasonably on the Microsoft data. The combination of both datasets
during training performs the best or nearly the best on both testing
sets (Table 2).

We can check whether we have collected enough tuples by hold-
ing back some of the training data and observing accuracy and
perplexity (Figure 4). We can see that we have collected more
than enough randomly sampled data; improvements stop at around
10,000 triplets relative to the 25,000 we collected. However, our
triples are randomly sampled; it may be that sampling triples closer
in style could add further discriminative power [Tamuz et al. 2011].

6.3 Failure Cases

Our similarity measure disagrees with the MTurk majority 19% of
the time; we include the 25 worst examples where our probability
is most inconsistent with the MTurk opinions in the Supplemen-
tal Materials. We show two typical examples in Figure 5. In the
left example, the style of all three clip arts is very different, and it
is surprising the MTurk opinion is so consistent either way. The
right example shows another common error; our metric generally
believes two clip arts with color are more similar with each other
than to a black and white clip art. However, in this case, the iconic
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nature of the examples overwhelms other differences for humans.

Figure 5: Two tuples incorrectly labeled by our similarity function.
In both cases, Turkers agreed (by a 9-1 margin) that the first clip
art is more similar to the second than to the third, whereas our
algorithm scores the first and third as more similar.

7 Applications

We apply our style similarity metric in three ways: to cluster and vi-
sualize the space of clip art styles, to perform search, and to support
a mashup application for creating compositions of clip art.

7.1 Clip Art Style Visualization

We use our style distance function as a basis for visualizing the
diverse styles of clip art in our dataset. In particular, we use the
popular t-SNE [van der Maaten and Hinton 2008]; this technique
maps a high dimensional feature vector to a 2D space where similar
styles are located close to each other. To create the visualization in
Figure 6, we reduce the entire dataset to 100 examples by k-means
on the Wx values, select only dogs, and then perform t-SNE. We
can observe a clear separation of style; colorfulness increases from
top to bottom, while stroke complexity varies left to right.

Figure 6: A 2D embedding of clip art styles, computed using t-SNE,
shown with “dog” examples.

7.2 Search

Figure 10 shows typical results of search queries using our method;
we show an additional 500 examples in the Supplemental Material.
Each image in the left column shows a query image. The next col-
umn shows the results from the dataset that our method judges to
be most similar. In each case, the algorithm appears to have re-
covered at least some artwork from the exact same artist and style,
after searching in the entire dataset of 194,663 pieces. The other six
columns show the top 3 results each for keyword queries, i.e., the
three most similar cat images, the three most similar fish images,
and so on. The amount of clip art in each category ranges from
598 (sky) to 1836 (man). In many cases, the algorithm does not find
matches by the same artist, but finds excellent matches nonetheless,
with similar stroke styles, similar fill styles, and so on. For example,
the dinosaur query is drawn in a woodcut style with solid color fills.
The first two cat results appear to be from the same artist, whereas
the third is a tiger that is not a woodcut but is similar nonetheless.
The other examples show cases where woodcut styles are found,
or, when no more woodcuts can be found, similar non-woodcuts
are returned.

Search is typically evaluated with precision-recall, where the goal
is to return search results that are in the same category as the query.
In our case, most of our data is not cleanly separable into rele-
vant and irrelevant categories. The Microsoft data is separated into
groups; however, this represents only 1% of our overall data. Also,
we found that many of the groups had similar styles to each other,
which means that clip art from one group is often relevant to queries
from another group.

7.3 Clip-Art Mash-ups

We also demonstrate the usefulness of our similarity metric with
a simple clip-art mashup application (Figure 7). The application
allows users to search for and combine multiple pieces of clip art
into a composition. Our clip art library is organized into 13 com-
mon categories (e.g., dog, tree, house); the user can also search by
keyword to find objects not in common categories, or to add a mod-
ifier (e.g., running dog). We provide 11 pre-made backgrounds that
the user can select from, including a blank white background. Clip
art is added to the composition by dragging and dropping from the
search results; it can be resized or rotated, and the layer order can
be modified. The app is implemented in HTML5. We use Apache
Lucene to extract keywords from clip art file names and tags. We
show several examples of mash-ups created with our app in Figure 1
and the Supplemental Video.

During search, clip art that matches the keyword and category query
are sorted by their style similarity to all currently-used clip art (av-
eraged over the existing clip art). The sort order automatically up-
dates whenever clip art is added or removed from the canvas.

When there is no clip art in the current canvas, a naı̈ve approach
would be to order the search results randomly. However, some
styles are more common in the dataset than others, leading to some
styles not being represented in the results. As in other search prob-
lems [Radlinski et al. 2009], it is important to produce results with
diverse styles. We produce diversity as follows: In advance, we pro-
duce a two-level hierarchical clustering; the entire dataset is clus-
tered into 100 clusters by k-means on Wx values, and then these
cluster centers are clustered again to produce seven top-level clus-
ters. Then, at search time, the first seven search results are sampled
sequentially from the seven top-level clusters. This process repeats
to generate the next seven results, and so on. Within a top-level
cluster, the second-level clusters are also sampled sequentially, to
avoid repetition within the cluster.
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Figure 7: Our mash-up interface. The user searches for clip art
in the left panel by typing keywords and/or by selecting categories
from the drop-down menu. Results are shown below the search but-
ton, sorted by stylistic similarity to already-selected clip art.

Figure 8: Typical mash-ups created by Turkers using our similarity.

Evaluation. To evaluate the impact of our similarity measure on
mash-up creation, we performed two different MTurk studies. In
each study, users were asked to create high-quality compositions.
Some users were provided with a version of the application in
which search results are sorted by similarity to the existing com-
position, and others received an interface which sorts search results
randomly. Users were not told of this difference.

In the first study, users were given an open-ended task: they were

Figure 9: Typical mash-ups created by Turkers without our simi-
larity metric. All results are included in the Supplemental Material.

free to choose the topic of the composition, the background, and the
number of images to use. In the second study, we asked for a spe-
cific story, fixed the background, and required the users to include
at least four different pieces of clip art and perform at least four
different searches. Study details are in the Supplemental Material.

We gathered 38 compositions for the first study (19 with our met-
ric on), and 95 compositions for the second (47 with our metric
on). We show several typical examples of compositions both with
our metric and without in Figures 8 and 9, respectively (we include
all compositions in the Supplemental Material). We then asked a
separate pool of MTurk workers to evaluate the compositions on
both style coherence and general preference. Specifically, we per-
formed a 2AFC test between randomly sampled compositions with
and without our metric. We asked the questions: which composi-
tion has a more coherent style?, and which compositions do you
like better? For both tests, we perform a one-sample, one-sided
t-test comparing the mean of users preferences against the null hy-
pothesis (people have no preference, µ0 = 0.5). Compositions
created with our metric were perceived as having a more coherent
style (67% of agreement for the first and 69% for the second, with
p < 0.01), and participants liked them more (63% for the first and
66% for the second, with p < 0.01). The effect sizes for style co-
herence were 1.4 and 2.4 for the first and second experiments, and
1.4 for general preference for both experiments; these effects are
large.

When using the similarity-based interface, the clip art pieces used
in the mash-ups had a mean position of 24 in the search results
(confidence interval: ±4.4), whereas without our metric, the mean
position was 40 ±7.1. This indicates that, although users need to
look through many results in order to find content that matches their
goals, our interface cuts the length of the search nearly in half.

8 Conclusion

We have presented a similarity function for illustration style that is
trained from crowdsourced data on the human perception of sim-
ilarity. We also demonstrate a mash-up application for combin-
ing clip art of a consistent style into a scene. There are a number
of ways we could improve our system. We could collect data on
how humans name illustration styles, so that a user could ask for
a “sketchy dog.” We could learn relative attributes of style [Parikh
and Grauman 2011], so that a user could ask for a dog similar to
the current one but “more colorful.” Our metric learning technique
is fairly simple and there may be other, possibly non-linear meth-
ods that work as well or better; we have made our data public for
further experimentation. Finally, a more fundamental problem is
to understand and parse the elements that form an illustration, such
as outlines, fills, object identity, and so on. (Even identifying the
outline strokes in the vector art in our libraries is non-trivial.) This
analysis could lead to richer and more accurate analysis of illustra-
tion style and similarity.

Beyond our application of clip art style, we believe that recogniz-
ing the style of visual content will become increasingly important
as the amount of online content increases and remixing becomes
more and more common. Design-focused social networks such as
Pinterest can also benefit from the ability to search by style, without
relying on manual tagging. While visual recognition of semantics
is a mature field, recognition of style is less well explored and per-
haps more challenging, since style perception is more subjective.
Given the appropriate domain-specific features, our approach could
easily generalize to other kinds of style similarity, e.g., pictures,
fonts, graphic designs, architectural elements, etc. We believe that
training from data on the human perception of style is a promising
and general approach to this problem.
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Query Image Full dataset Cat Fish Man Sky Flower Tree

Figure 10: Style-based search. The leftmost artwork is the query image. The next column shows the most similar images in the full dataset of
200k images. The remaining columns show the top three search results in six different categories.
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A Feature Vector

We now give details of each feature in Section 3. Note that some of these
features are more relevant to clip art style than others, and some features are
completely removed by L1 regularization (Section 6.1); we include all the
features we tested for completeness. To compute features, we render each
clip art image to 400x400 pixels. For each image, we define a mask Ω that
approximately covers the clip art. We select all non-white pixels, perform
a morphological expand operation of ten pixels, and then fill the remaining
holes. All the statistics are computed only on the domain of Ω.

Color. The first color features are scalar values, defined as follows: Stan-
dard deviation of hue; average saturation; standard deviation of saturation;
average luminance; standard deviation of luminance; entropy of the lumi-
nance histogram, after quantizing it to 256 bins; entropy of the RGB his-
togram, after quantizing it to 512 bins; colorfulness, computed by the mea-
sure of Hasler and Susstrunk [2003]; colorfulness, computed as:

1

|Ω|
∑
p∈Ω

|Rp −Gp|+ |Gp −Bp|+ |Bp −Rp| ; (7)

percentage of pixels that are black; and percentage of pixels that belong to
the most dominant color.

Additionally, we define a few features in terms of a 20-bin histogram C(h)
of hue h, omitting pixels with saturation less than 0.1, similar to Li et
al. [2009]. Then, we include a feature for the frequency of the most common
hue (maxh C(h)), and a feature for the number of dominant hues:

#(h | C(h) > 0.05 max
h

C(h)) (8)

We also include the same two features above applied to a quantized RGB
histogram; that is, the number of pixels in the most frequent color, and the
number of dominant colors.

Shading. We concatenate eight-bin gradient magnitude histograms at
two resolutions of the image, 1x and 0.5x. The histograms are normalized
by |Ω| for the relative figure size. The resulting bins are concatenated to
form the corresponding features in x.

The first pair of histograms measure smooth gradients, while ignoring zero
gradients and sharp transitions. We define the region Φ as the region Ω
minus all black pixels and pixels with zero gradients. Then, we histogram
the following values for all p ∈ Φ:

g(p) = min(max(|∇Rp|, |∇Gp|, |∇Bp|), 1.1) (9)

The natural range of the above values is [0,
√

2]; however, we truncate any
values over 1.1 to minimize the influence of strong edges.

The second pair of histograms is computed as above, but only at black pix-
els, and without truncation of 1.1. This histogram is meant to quantify the
number of sharp edges (e.g., ink edges).

Texture. Our first texture descriptor are Local Binary Patterns
(LBP) [Ojala et al. 2002; Zhu et al. 2010]. An LBP feature vector is rep-
resented as a series of patterns; each bin in our feature vector contains the
number of times a certain pattern occurs in the image. The number of pat-
terns is specified by the radius R and the sampling points P . We used
rotational invariant patterns [Ojala et al. 2002] at three resolutions LBPP,R,
in particular LBP8,1, LBP12,2 and LBP16,4 yielding a total of 10, 14 and
18 patterns (bins), respectively. We use two different sampling spaces: all
edges of the figure, and only external contour lines. In total this descriptor
yields 84 features.

Our second texture feature are Haralick texture features [1973]. We com-
pute all 22 Haralick texture features, which are obtained from co-occurrence
matrices capturing the frequency of different combinations of grayscale
pixel values.

Stroke. Our stroke features are computed with the Stroke Width Trans-
form (SWT) [Epshtein et al. 2010]. We compute SWT separately on outer
edges of the figure on the silhouette, and inner edges, since their appearance
is often different; the result is two arrays of likely stroke width values per
pixel. We then take the mean and standard deviation of these two images.
Finally, to avoid scale sensitivity we compute SWT at four different reso-
lutions of the image: 1x, 0.5x, 0.25x and 0.12x. The result is 16 feature
values.
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