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Abstract Searching by style in illustration data sets is a particular problem
in Information Retrieval which has received little attention so far. One of
its main problems is that the perception of style is highly subjective, which
makes labeling styles a very difficult task. Despite being difficult to predict
computationally, certain properties such as colorfulness, line style or shading
can be successfully captured by existing style metrics. However, there is little
knowledge about how we distinguish between different styles and how these
metrics can be used to guide users in style-based interactions. In this paper, we
propose several contributions towards a better comprehension of illustration
style and its usefulness for data exploration and retrieval. First, we provide
new insights about how we perceive style in illustration. Second, we evaluate
a handmade style clustering of clip art pieces with an existing style metric
to analyze how this metric aligns with expert knowledge. Finally, we propose
a method for efficient navigation and exploration of large clip art data sets
which takes into account both semantic labeling of the data and its style.
Our approach combines hierarchical clustering with dimensionality reduction
techniques, and strategic sampling to obtain intuitive visualizations and useful
visualizations.
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1 Introduction

The amount of visual information available online has increased dramatically
during the last years. In particular, clip art collections contain massive amounts
of images which are usually classified by content. While a semantic classifica-
tion is undoubtedly needed for searching tasks, a style-based exploration might
result extremely helpful in certain situations, for example, to create visually
coherent presentations, web content, or any kind of graphic design. Occasion-
ally, we find these images labeled by the designer, although the number of
images in each group is usually very small and they cover a specific subject
e.g. animals, food,... Having unambiguous style labels would be of great help
in situations where we need to explore hundreds of images from multiple col-
lections. The problem is that the subjectivity in the perception of style makes
finding this labeling a very difficult task. The style metric of Garces et al. [8]
contributed to quantify certain properties of style, such as line properties or
shading, however there is little knowledge about how we distinguish between
different styles and how these metrics can be used to guide users in style-based
interactions.

In this work, we aim to obtain an efficient method to explore large collection
of clip art data sets by style. First, with the purpose of better understanding
the perception of illustration style and its correlation with the metric, we
perform a user study in which we gain new insights on how do people identify
similar styles; then, we evaluate the metric using a hand labeled data set.
Finally, we propose an exploratory interface which allows users to combine
images from multiple collections and to identify the most common styles at
first glance. To do so, we leverage the existing metric to automatically discover
the implicit style hierarchies existing in such data sets by means of hierarchical
clustering and dimensionality reduction techniques.

The paper is structured as follows: in Section 2 we present the related work;
in Section 3 we briefly describe the style metric of Garces et al. [8] and present
our study about how do people identify similar styles. In Section 4 we perform
the analysis of a labeled data set. The exploratory interface and results are
described in Sections 5 and 6.

2 Related Work

Style Analysis. The analysis of artistic style has received much less attention
than stylistic rendering. A common way to algorithmically capture the style
elements is to learn a generative model; that is, a model that learns to create
new examples of a style from scratch, such as generating new typefaces [32,
3], and learning 3D hatching styles from examples [13]. Another type of ap-
proaches transfer styles from examples, such as transferring painting styles
[10], photographic styles [2], or curve styles of 2D shapes [17].

Willats and Durand [34] provide an overview of the elements of picto-
rial style in 2D illustrations. Recently, a computational set of low level fea-
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tures which capture style has been developed for illustration [8] and fonts
[24]. Several methods provide style similarity metrics for 3D shapes [9,18,19],
clothes [35] or infographics [28]. These works provide a distance metric which
allow content retrieval based on style, and that can be used in conjunction
with any existing algorithm which requires a similarity measure. In particular,
in this work we leverage the work of Garces et al. [8], to obtain aesthetically
coherent clusters which are exploited to provide meaningfully visualizations of
clip art datasets.

Exploration and Visualization of Data Collections. The huge amount of
datasets available online has pointed out the necessity of new tools to explore
its content in intuitive ways. In particular, the problem of exploring and brows-
ing 3D shapes is currently a hot topic of study. Kleiman et al. [14] introduce
the idea of dynamic maps to provide smooth navigation between the elements
of 3D datasets. Averkiou et al. [1] propose a combined approach between ex-
ploration and synthesis of 3D shapes. A related approach to ours is the work
of Huang et al. [11], which provide a method for organizing heterogeneous 3D
shape collections based on different distance measures between shapes. They
additionally study several tree-based hierarchies to present the data. However,
none of these approaches explore the dimensionality of style.

Artistic visualizations of illustration collections have been proposed in the
context of packing layouts [26], although unlike us they do not take into ac-
count semantic labeling, and just focus on optimal arrangements for fixed lay-
outs. Modeling and navigation through color spaces was introduced by Shapira
et al. [30], which fit a Gaussian Mixture Model to the pixel colors of the image.
Visualizing high dimensional spaces in two dimensions has been done before
for sketches [5], color palettes [23] and 3D models [31].

3 Analysis of Style in Illustration

In this section we first briefly review the style similarity metric of Garces et
al. [8], and then we present our study of how users identify style in illustration.

3.1 Style Similarity Metric

Thanks to the style similarity metric learned by Garces et al. [8], we can com-
pute a real-valued measure of the similarity in style of two input pieces of clip
art, independent of semantics or content. In the original work, the authors
demonstrate the usefulness of the metric in search-by-style operations: given
a particular query clip art, the search results appear sorted by style similarity.
The metric was computed by combining crowdsourcing and machine learning.
First, they modeled each clip art image as a high-dimensional feature vector
which captures four aspects of style: color, shading, texture and stroke [4].
Then, through Amazon Mechanical Turk (MTurk), a set of users were pre-
sented with clip art triplets, and were asked the question: ”Is clip art A more
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Click on the image B or C whose style is 
more similar to the image A

B

C

Attribute Reason ID
No contour 1
Thick l ine 2
Thin l ine 3
Irregular/broken l ine 4
Black&White 5
Monochromatic or very few colors 6
Colourful 7
Similar color saturation 8
Smooth 9
Sharp transitions between colors 10
3D 11
Flat or two-dimensional appearance 12
Simple form: few detail 13
Complex form: lot of detail 14

None Other reasons 15

Contour

Color

Shading

Shape

(b)(a)

A

Fig. 1 (a) Example of question used to capture style similarity data. Each test (HIT) on
Amazon Mechanical Turk contained fifty questions of this kind. (b) List of the available
reasons offered to people to choose from.

similar in style to clip art B or C?”. Figure 1 (a) shows an example of question
of such a type. Last, using the feature vector and the relative comparisons
collected via MTurk, the style similarity metric, ds, was learned by computing
the Euclidean distance metric [16,29] (please refer to the original paper for
extended details).

3.2 How do people identify similar styles?

While the style metric dsworks reasonably well for style-based image retrieval
operations, the authors do not offer any insights about what attributes people
consider more important when judging if two styles are similar, and thus, the
metric could be skipping relevant properties. In this work, we directly asked
people what they look at when comparing two pieces by style.

We followed the same MTurk-based methodology as the original work to
obtain relative comparisons (see Figure 1 (a)), and additionally, we gathered
information on the reasons to select one result over another in the performed
comparisons. Thus, during the test, each participant would occasionally be
asked to choose one or several items out of a proposed set of reasons for
picking a result [27]. This questionnaire appeared randomly with a probability
of 1 in 10 in each test composed by 50 relative comparisons. Figure 1 (b) shows
the complete list of proposed reasons grouped by style attribute. In total, 294
people took part on the experiments, where 83 had none artistic experience,
190 had some experience, and 21 were professional artists. We collected 2654
questionnaires of this kind, and grouped the responses by user. We count the
number of times a user selects a reason and normalize that number by the
total amount of answers per user.

The analysis of the answers is shown in Figure 2. It can be seen that the
dominant high level attributes that people notice are color and shape. Among
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Fig. 2 Summary of the results from the MTurk questionnaire. Top, cummulative number
of selections per attribute, normalized with respect to the total number of answers. Bottom,
frequency of occurrence of each reason normalized with respect to the total number of
answers per attribute. In both plots, users are separated by artistic experience.

color criteria, the most frequent reason is the presence of a dominant single
color, over other reasons like color saturation. Many users identified shape as a
very important attribute, which is interesting because the style metric dsdo not
include shape in the computed properties. Given that distinguishing between a
3D and a 2D shape is a high level vision task [7], this finding opens new avenues
of future work and a big insight about how our visual system discards other
style inputs such as shading to favor shape instead. Finally, we did not find
any correlation between the artistic background of the users and the particular
choices they made, suggesting that we may not need training to perceive style
in this kind of artworks. The reason might be that the style of these pieces
of art is very well defined and thus, our visual system finds it easy to discern
styles with such a high level of stylization.

4 Analyzing a Labeled Dataset

In order to analyze how the style metric dsaligns with expert knowledge, we
use the data set labelled by style from the Microsoft Office library (now dis-
continued) which, to our knowledge, is the only free clip art data set labeled
according to style. We collected a total of 3024 clip art images of 220 differ-
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Fig. 3 Example of labeled styles from the MS data set. Top-left style is defined by sketchy
strokes without fill. Top-right and bottom-left are more colorful styles, the first with black
stroke and the second without it. Bottom-right is defined by rounded shapes with black fill
and no colors.

ent styles, where the average number of images per style, or style-cluster, is
sixteen. We can see in Figure 3 a few examples of the initial classification as
labeled in the data set, which shows that in principle the labeling makes a
good job at discerning styles, with style variations within the same cluster
being minimal. An alternative option to use the metric ds, could have been
to use this labeled data set of 3024 images to train a new metric [36,12,20].
However, this subset of data only represent a 1.5% of the total amount of
data used to train ds, which was 200k images. Thus, it is expected that dswill
generalize better for any other set of images and styles.

4.1 Ranking Evaluation

In order to evaluate the metric using the labeled data set, and, since the style
metric was originally designed for searching purposes, we decided to evaluate
the quality of the ranking returned after a search operation. That is, for each
image of the dataset, which we call the query, we let the metric compute the
distances to the rest of the clip art images and rank them from low to high
values. At the top of the resulting ranking we expect to find elements with
the same style label as the query (true positives) and almost no elements with
different labels (false positives); as we traverse the ranked list further down, we
expect an increasing number of false positives. To do this, we employ several
ranking metrics, which have been adapted to handle labeled data [21]:

AUC Measures the Area Under the ROC Curve. For binary classification
problems, the ROC curve measures the amount of false positives against true
positives. In our case, this value is computed counting the number of items
returned. This metric is position independent, so, an incorrect item at the
bottom of the list counts as much as an incorrect item at the beginning.

Precision-at-k (Prec@k) Measures the fraction of relevant results out
of the first k returned. This measure is specially relevant when only the first
few results matter, as in web browsing or clip art search applications.

Mean Average Precision (MAP) Precision-at-k score of a ranking,
averaged over all positions k of relevant items.
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BASELINE
LEARNED 
WEIGHTS

AUC 0.936 0.944
MAP 0.365 0.399
MRR 0.765 0.779
Prec@k=3 0.605 0.628
Prec@k=10 0.470 0.499
NDCG@k=3 0.614 0.638
NDCG@k=10 0.518 0.545

[Garces 2014]

Fig. 4 Ranking measures between the unweighted features (Baseline) and the style simi-
larity metric [8]

Mean Reciprocal Rank (MRR) Inverse position of the first relevant
item in the ranking.

Normalized Discounted Cumulative Gain (NDCG) Extension of
the MRR metric. In this case all of the top k items are scored at a decaying
discount factor.

Figure 4 shows the results of these ranking metrics on the initial feature
set of Garces el al. [8] with uniform weights (baseline), and with the style
metric ds. A value of one means a perfect score. As expected, the results are
always better for the learned weights and improve when the ordering of the
result does not matter, as is the case of AUC and MRR. We can also observe
that increasing the value of k for Prec@k and NDCG@k decrease the quality
of the results, introducing more false positives. In general, these values are
relatively low except for AUC, which does not take into account the relative
ordering of the elements and thus, performs quite well. As we will see in the
following, the huge similarity between the styles of the hand-made labels has
heavily penalized these metrics.

Figure 5 shows some of the ranking results where the first item on the left is
the query image and the other nine items are the most similar images according
to the style metric. The images that do not belong to the same cluster as the
query (as originally labeled) are highlighted in red. At first glance, we could
say that the metric is performing poorly, however, a closer visual inspection of
these elements reveals that the styles of the retrieved images are quite coherent.
This indicates that many of the images initially labeled as different styles are
actually very close in the feature space learned by the metric; and thus, they
are perceived as similar styles. Although the intra-cluster distance is very
small, which is a desired property, the inter-cluster distance is also sometimes
very small. A disjoint labeling like this one do not capture the overall styles
available in the data set and thus, would hinder style-based navigation task. In
the following section, we propose a exploratory interface based on clustering
which will allow to overcome this limitation by showing the most frequent
styles available in the data set.
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Fig. 5 Ranking results. The first image on the left is the query image, the remaining images
are sorted by lower to high distance to it. We have used the style metric of Garces et al. [8]
to obtain the distances.

5 Style-Based Exploration of Illustration Datasets

As we have seen in the previous section, we may find several occasions where
images of the same style do not necessarily have the same style label, either
because they come from different collections/artists or because the labeling is
not accurate. Therefore, one of the problems that we face when trying to find
elements in these collections is the prior lack of awareness of the available styles
in the data set. This is specially problematic when we need to select more than
one images stylistically coherent i.e. we may find that the requested images
are not depicted in the desired style.

Suppose a user needs to find in certain data set several images that match
in style. Each image has to belong to a different semantic category, e.g., a
dog, a cat and a tree. We denote as L the total set of categories or semantic
labels requested by the user, where in this example L = {dog, cat, tree}. In a
typical workflow, the user would start querying the data set sequentially by
category watching that the style of all the images matches. We can make this
task easier by sorting the retrieved results by style similarity to the previously
selected items using the metric ds. In this second scenario, the more delicate
step is to select the first image, since its style will define the order in which
the remaining queries are sorted. The problem is that if the style chosen in
the first place is unusual in the data set, the user may end up disappointed for
not having enough stylistically similar images of all the requested categories.
We propose a solution to this problem in which the user knows in advance
the amount of feasible visual styles which are available in the data set. Our
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approach combines unsupervised clustering techniques along with adaptive
dimensionality reduction and mapping to sample and visualize the images of
these huge collections in an efficient and practical interface.

Given a collection of semantically labeled images, which was previously
filtered and labeled by the set of semantic categories L specified by the user,
we first perform hierarchical clustering over the filtered collection. Since visu-
alizing the resulting tree may be impractical, we propose two complementary
visualizations. On the one hand, we visualize only the top level nodes of the
resulting hierarchy in the form of a taxonomy of styles (Section 5.1). This
gives us the most frequent styles in the set. On the other hand, we use di-
mensionality reduction techniques with adaptive relocation to visualize in two
dimensions the high dimensional space of the style features, allowing the user
to navigate through such space (Section 5.2).

5.1 Creating a Style Taxonomy

In order to facilitate data exploration and obtain meaningful taxonomies of
the style elements, we have chosen an approach based on hierarchical clus-
tering. Following a bottom up approach, each element initially starts on its
own cluster, and, on successive iterations, clusters are merged according to a
chosen criteria. In this work, we have chosen Ward’s criteria [33], for which,
at each step of the algorithm, the pair of clusters with the minimum vari-
ance within-cluster are merged. A typical problem with clustering is to choose
the appropriate distance metric that captures the underlying relationships be-
tween the elements. In our case, we rely on the style metric ds, which comprises
users’ knowledge for style discrimination, and has been extensively evaluated.

From this step we obtain a hierarchical tree, which has two types of nodes:
intermediate nodes and leaf nodes. Leaf nodes are the lower level elements of
the hierarchy and are represented by their corresponding images. Intermediate
nodes define branches of style and may contain leaf nodes and other interme-
diate nodes. To select the representative image of an intermediate node, we
choose the leaf-node image with the closer distance to its centroid in the metric
space of ds.

Representative Styles In huge data sets it may not be possible to show all
the hierarchy in one view. Therefore, we need to develop a strategy to sample
the hierarchy and select a representative number of intermediate nodes so
that we show as much information as possible about the available styles. Our
solution consists of pruning the branches that do not satisfy the following
conditions: 1) the total number of images of the branch is above a certain
number κ; 2) the number of images of each semantic category is greater than
a value τ . The first criteria balances the taxonomy so that all the nodes
contain the same number of images, the second criteria allows to discriminate
feasible paths. If a certain node does not meet these two criteria, we remove
the node and its branch. We then take the resulting leaf nodes of the pruned
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hierarchy as representative styles. By changing the values of the thresholds we
control the size of the resulting hierarchy and guarantee to capture with a few
nodes the most frequent styles of the data set.

To illustrate the process, we applied it to a set of 3024 images of a wide
variety of styles from the Microsoft Office online libraries. We show in Fig-
ure 6 the top level nodes of the resulting hierarchy after the pruning and the
representative styles. We observe that the most dominant style has colorful
images without contour -five representative nodes in the middle capture this
style. On the contrary, the less frequent style is compound by black and white
images- only one node capture this style. Depending on the amount of data
that we want to visualize, we vary this threshold. In Figure 6, we want every
representative style to have 10% of the total data ignoring semantic labeling,
so κ = 0.1 · 3024 and τ = κ.

Representative styles

Styles Taxonomy 

Fig. 6 Top level nodes of the style taxonomy with κ = 0.1 ·3024. Each of the representative
style branch contains around 10% of the total data. Note that black and white style (bottom-
right node) is less frequent in the data set than colorful, stroke-less style (nodes five to nine
in the middle).

5.2 2D Exploration: Adaptive arrangement

The style taxonomy resulting from the previous step makes it possible to vi-
sualize at high level the diversity of styles available in the data set. Each leaf
node of the taxonomy represents a style branch, which the user can further ex-
plore to find the desired icon sets. Since each of these branches might contain
too many images to visualize as is, we propose a two dimensional grid-based
visualization where Euclidean distances between the images in the grid are
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equivalent to distances in the perceptual metric space of ds. The optimal ar-
rangement needs to satisfy the following conditions:

1) Fixed layout and number of slots. If the selected branch has more images
than available slots in the grid, some images will need to remain hidden in
the main view. According to this condition, interface designers can select
the optimal size of the grid to fit their interface and data requirements.

2) Balanced number of categories. If the user requests more than one semantic
category or label, the amount of visible images for each label should be
approximately the same. The task of finding the requested set of images is
easier if the user can visualize most of the images at first glance.

3) Perceptual distances. Images with similar style should remain close to each
other in the two-dimensional arrangement. This kind of arrangement makes
it easier the exploration of big sets of images which may contain multiple
style variations.

With the above conditions, it is unsuitable to use existing methods of
layout generation [6,22]. They do not provide support for fixed layouts, where
there are more images than slots (condition 1), and do not take into account
the balance of the labels (condition 2). Thus, our goal is to optimally place in
a grid the set of images from a style branch according to the three previous
conditions. We propose a greedy algorithm which keeps balanced the number
of displayed labels, maintains the perceptual distances in style in the grid,
and takes into account special situations where there are more images than
positions in the grid, i.e., situations in which one position in the grid may
contain multiple images.

Problem Formulation We consider a regular grid G = {X} of size M × N ,
the set of images of a branch I which we want to arrange in G, and a set of
semantic labels L. Each image i ∈ I has a label from L associated, and the
function label(i) returns it. Each node x ∈ G defines a tuple x = (i, l,h, s),
where: xi ∈ I is the image chosen to represent the node; xl ∈ L is the semantic
label of such image; xh is the list of candidate images assigned to the node
(which excludes xi) and xh(k) denote the kth image in such vector; xs is the
state of the node, where xs ∈ {single,multi , empty}. We define a function
o(x) = |xh| that counts the total number of candidate images per node, and
a function oh(x, a) = |xha | that counts the number of candidate images per
node x with a given label a. Each state xs is defined as follows:

- xs = single⇐⇒ i 6= ∅, l 6= ∅, o(x) ≥ 0
- xs = multi⇐⇒ i = ∅, l = ∅, o(x) > 0
- xs = empty⇐⇒ i 6= ∅, l 6= ∅, o(x) = 0

where single and multi nodes differ in that single nodes have their representa-
tive image defined, and multi nodes do not. Note that multi nodes just define
transitory states where there are multiple candidates for the node but a repre-
sentative image has not been selected. A single node where o(x) > 0 contains
hidden images that can be shown, for example, in auxiliary panels or pop-ups.
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Initialization We initialize G with the output of SOM (Self-Organizing Map)
algorithm [15] applied to the set of images I with a grid size M × N . This
method finds a mapping between the n-dimensional feature space of the images
and the 2D grid. In our case, we use the 169-dimensional style feature vector [8].
The SOM algorithm performs unsupervised training of a neural network to
obtain a weak classification of the data. This method is suitable for grid struc-
tures and has been successfully used to display continuous color palettes [22].
As a result, we have a mapping of each image on the grid where the perceptual
distances in the feature space are well preserved. However, this mapping has
three problems: 1) it may contain unassigned nodes (xempty); 2) the mapping
of the labels might not meet the balance criteria, i.e. the amount of images of
each label in single nodes is not the same; and 3) it may have multiple images
assigned to the same position of the grid. When this third situation happens,
we set the node to multi state, and leave the representative image and label
empty. Our goal is to find the optimal arrangement of G, so that it meets this
three requested conditions, or similarly, the following energy is minimal:

min
G
|EN |+

∑
a,b∈L,a6=b

|γ(a)− γ(b)|+ |MN | (1)

where γ(a) = |{x|x ∈ G∧xs = single∧xl = a}| is the number of single nodes in
G with label a ; EN = {x|x ∈ G∧xs = empty} is the set of empty nodes, and
MN = {x|x ∈ G ∧ xs = multi} is the set of multi nodes. Solving the optimal
arrangement can be shown that is an NP-hard problem, therefore, we propose
a greedy efficient solution which works sufficiently well for our purposes. In a

first step, we turn all the multi nodes into single nodes (xmulti −→ xsingle)
by selecting the optimal representative image among its candidate list. In a

second step, we turn the empty nodes into single nodes (xempty −→ xsingle)
by taking hidden images from neighbor nodes in the grid.

Step 1: Arrangement of Multi nodes (xmulti −→ xsingle) The näıve solution
to turn every multi node into single node is to randomly choose one of the
candidate images in xh. This is an optimal option if we only have one label in
L, however if we have more than one label, we need to choose the image in a
more principled way to guarantee the balance condition. Our strategy is the
following: first, find the label with minor occurrence in single nodes; second,
find a suitable multi node which contains that label in the list of candidates
xh; and third, set as representative image any appropriate image from the
candidate list xh of the chosen node. In more detail, in each iteration, we find
the set of minority labels in single nodes (line 3); then, sequentially for each
of these labels, we find a suitable multi node which contains such label in xh

(line 5). If, for a certain label, we do not find a multi node which contains
it, we remove such label from the candidate label set LC (line 7). For finding
the optimal multi node, we give priority to the nodes with smaller number
of candidates (line 9). This criteria aims at maximizing the chances to find a
suitable multi node for the next label at every step.
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Algorithm 1: Step 1: Arrangement of Multi nodes

Data: G = {X}, L
1 LC ← L
2 while ∃xmulti ∈ G′ do
3 {ls} ← min

l∈Lc

γ(l)

4 foreach l in ls do

5 S(l) = {x|oh(x, l) > 0 ∧ xmulti}
6 if S(l) = ∅ then
7 LC ← LC − {l}
8 else

/* Find optimal multi node in S(l) */

9 xj ← min
x∈S(l)

o(x)

/* Update node values: state, image, label and list of

candidates */

10 xsj ← single

11 xij ← x
h(k)
j : label(x

h(k)
j ) = l

12 xlj ← l

13 xhj ← xhj − {x
h(k)
j }

14 end

15 end

16 end

Algorithm 2: Step 2: Arrangement of Empty nodes

11 Data: G = {X}, L
2 LC ← L
3 while ∃xempty ∈ G ∧ LC 6= ∅ do
4 {ls} ← min

l∈Lc

γ(l)

5 foreach l in ls do
6 M(l) = {x|oh(x, l) > 0}
7 S(l) = {x|xempty ∧ x ∈ 8Nx′ ∧ x′ ∈M(l)}
8 if S(l) = ∅ then
9 LC ← LC − {l}

10 else
/* First, find the optimal empty node xj in the set S(l) */

11 xj ← min
x∈S(l)

oNh (x) : oNh (x) =
∑

x′∈8Nx

o(x′)

/* Second, take the representative image from the neighbor node

with fewer available candidates. Then, update values */

12

13 xij ← xik : xk = min
x∈8Nxj

o(x)

14 xlj ← l

15 xsj ← single

16 end

17 end

18 end
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Step 2: Arrangement of Empty nodes (xempty −→ xsingle) The process to
turn empty nodes into multi nodes is similar as before. We aim to fill empty
nodes with the less frequent labels ls, so we start by sorting the labels by
frequency of appearance (line 4). Since empty nodes do not have a candidate
list, we need to find a suitable image from its neighborhood nodes’ candidate
lists. We start by computing the list of nodes M(l) which contain the chosen
label l in their candidate list (line 6). Then, we explore its 5× 5 neighborhood
Nx in the M×N grid, and create the candidate list S(l) with the nodes within
Nx which are empty (line 7). If S(l) is empty, there are no hidden images1

with the requested label, so we remove the label from LC . Otherwise, we select
the empty node in S(l) which has the fewer amount of candidate images in
its neighborhood (line 11). To select the image to assign, we find the neighbor
node with fewer candidates available and take any suitable image.

The whole process is illustrated in Figure 7 for a subset of data and a
small grid layout of 5 × 6. The initialization step shows several empty slots
and unequal label distribution. Multi nodes are marked with a cross in the top
panels; the assignment of labels and representative images for these nodes is
done randomly in the initialization. In the second step, the label and images
of multi nodes are set to maximize the variety of visible labels (balance condi-
tion). Finally, in the last step, the holes are filled with hidden candidates. We
can see in purple and yellow two examples of this rearrangement. In the final
step, all the images are visible while keeping the style arrangement.

6 Results and Evaluation

In the following section, we test and evaluate every step of our approach
separately. We first provide several examples of the representative styles for
multiple variations of a data set. Then, we provide examples of 2D arrange-
ments and comparisons with related work. Finally, we evaluate the usefulness
of our approach with a user study.

We have selected a collection of images, which we name the tree-dog-sky
data set, which contains 2609 images of three different categories: 568 images
of sky category, 894 of tree, and 1147 of dog. After the branch pruning of
Section 5.1 with parameters τ = 10 and κ = 100, we obtain a total of 1129
images (376 sky, 321 tree and 432 dog) which yield fourteen representative
styles (Figure 8 (a)). This step guarantees that for each of these representative
styles we have at least one hundred images in total and ten images of each
category. In the representative styles we can see that the data covers a great
variety of styles: four nodes for black and white styles with different levels of
sketchiness, two nodes for colorful styles without contour and seven additional
nodes with different variations of shading and complexity. We have also done
experiments by randomly removing images from one category. In Figure 8 (b-c)

1 Note that candidate images in a single node become hidden images after step 1.
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Initialization Distribution after the first step:
xmulti to xsingle

Distribution after the second step:
xempty to xsingle (final arrangement)

xx

xx

x x

xx

x

Fig. 7 Distribution of nodes and labels after each step of the algorithm: initialization (first
column), step 1 (second column) and step 2 (third column). Top row: labels (xl) for dog,
sky and tree categories represented by red, green and blue colors respectively. Bottom row:
images (xi). The crosses in the initialization column define multi nodes where label and
images are randomly selected. Bottom panels of columns one and two, contain an additional
vertical panel on the right (squared in purple). The images within this panel belong to the
corresponding purple node on the left panel, i.e. in this nodes the number of candidate
images is greater than zero after both steps o(x) > 0. On the third column, these images
have been redistributed to produce a fully occupied grid. The input is a set of 2141 images
with three different labels: dog, sky, tree. The number of images for each label in the same
order is: 1147, 100 and 894. Note that green label (sky) is the less frequent and yet it has
significant representation in the final arrangement.

we can observe the resulting styles by reducing to 100 the number images of sky
and tree categories and τ = 5 and κ = 50. We can see that the representative
styles change depending on the available data.

We have compared our adaptive 2D arrangement with the recent method
of Fried et al. [6] and the raw output of Self-Organizing Maps (SOM) [15]. We
have selected two of the style branches of Figure 8 (a) and mapped its content
in a 2D grid (Figure 9) of fixed size 7 × 10. Since Isomatch does not handle
grids of smaller size than the number of images, we have randomly sampled a
subset of the data to visualize it. In our solution and SOM we mark the nodes
with more than one images assigned with a red square. We can observe that
our solution and SOM preserves better than Isomatch the style distances in
the grid, see for example, that the moon images in the black style are located
closed to each other in SOM while the arrangement of these images in isomatch
looks random. The same happens with several other clusters of style marked
in the figure. Our solution keeps this good behaviour of SOM while producing
a fully occupied grid.

Evaluation We performed a user study to evaluate the impact of our approach
on icon selection tasks. In this study, some users were provided with our style-
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(b)

(a)

(c)

Fig. 8 Representative Styles of the tree-dog-sky data set. (a) Contains the full data set
with τ = 10 and κ = 100. In (b) we have reduced the amount of tree elements to 100, while
in (c) we have reduced the tree category by the same amount, both with τ = 5 and κ = 50.
As we can see the representative styles change depending on the available data.

based exploratory interface, and others received a simpler version were the
search results were just sorted by style similarity. Users were not aware of this
difference, and they just interacted with one version of the interface.

The task was to find a set of icons matching in style for a kids’ user inter-
face. We gave them the list of requested categories: face, fish, flower and bird
(with 937, 1014, 1022 and 1015 images), which they had to find on the data
set and place on a canvas. Each time a category was set on the canvas, we
automatically eliminated the images of such category on the retrieved results
to ease the task in both interfaces. We asked each user to create four sets of
icons of four different styles, and at every moment, they were able to see all
the completed sets to avoid repeating styles. In each of the requested sets, one
of the requested categories had considerably less images than the other three.
To avoid bias, the users were not aware of this fact. We specifically selected
this scenario to prove that our method can handle such difficult cases, when
the data set does not contain all the images in all the styles. There is a screen
capture of both interfaces and the instructions in Figure 10. Please, see also
the accompanying video.

We gathered a total of 64 icons sets, 28 created with our interface and 36
without it. For each interface, we measure the average time to complete each
set and the number of delete operations. The average time for each set using
our interface was 79 seconds with a confidence interval at 95% of ±20, and 108
seconds without it , with a confidence interval of ±27. The average number of
images deleted was 0.6 with our interface and 2.8 without it, with confidence
intervals at 95% of 1.1 and 1.2 respectively. We additionally captured sev-
eral comments from the users which tested the basic version that complained
about not having enough data of certain styles. From this experiments we can
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Self-Organizing Map (SOM)

Isomatch

Our solution

Fig. 9 2D arrangement for the two style branches marked with dotted lines in Figure 8 (a).
Top: Self-Organizing Map [15]. Middle: Isomatch [6]. Bottom: Our solution. We observe
clear style clusters in SOM (marked in red) which are also preserved in our solution. The
arrangement of these images in Isomatch looks more chaotic.

conclude that using our approach, the task of finding optimal icons sets of
multiple styles is easier and around 30 % faster than using basic exploration,
providing more information and guidance.
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(a)

(b)

(c)

Fig. 10 (a) Instructions for all users and both interfaces. (b) Our proposed solution. On
the top row we can check the available styles. At the bottom, the selected branch is arranged
in 2D. In nodes with more than one image, the remaining images are shown on the right
vertical panel. (c) Basic interface, where images of the data set are sorted randomly at the
beginning, and then, sorted by style similarity to the images of the canvas.

7 Conclusions and Future Work

In this paper we have presented a method to explore and visualize big col-
lections of clip art images according to its visual style. We have relied on an
existing style similarity metric which we have evaluated with two novel ap-
proaches: by means of a user study, we have learnt that users perceive stroke,
shape and color as the most dominant attributes to identify similar styles; by
using a labeled data set, we have obtained objective error metrics which mea-
sures its quality. Using this metric, we have built a hierarchy which captures
the underlying structure of styles existent in a given data set. A combined ap-
proach between dimensionality reduction techniques, and strategic sampling of
certain nodes of the hierarchy allows to intuitively visualize the styles present
in the data set and navigate through them. We have tested and confirmed the
usefulness of our approach by means of a user study.

The main problem we have found to capture style is that visual style at-
tributes are very correlated. For this reason, is highly difficult to identify clear
categories. An interesting avenue of future work would be to describe the style
with relative attributes [25], that is, it is easier to say that an image is very
colorful than to classify an image as colorful or not. In this sense, we want to
explore fuzzy clustering algorithms to see whether they can capture complex
relationships between the visual elements.
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