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A B S T R A C T

Textures made of regular repeating patterns are ubiquitous in the real world, most
notably in man-made environments. They are defined by the presence of a repeat-
ing element, which can show a significant amount of random variations, non-rigid
deformations or color noise. We propose an end-to-end pipeline capable of finding
the size of the minimal repeating pattern in single images, as well as obtaining the
single repetition that, when tiled, produces the most similar synthesis to the complete
image. We do this by combining state-of-the-art algorithms in image transformations,
repeating pattern detection, image stitching and deep perceptual losses. Additionally,
we show how our pipeline can find the minimal color pattern in woven fabrics, which
can be useful for both surface-based render methods and computer vision tasks in the
textile domain.

c© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Texture synthesis is one of the classical problems in the com-
puter graphics field, and numerous techniques exist which are
able to successfully replicate textures with different degrees of
regularity. Nowadays, these techniques have become particu-
larly relevant for efficiently generating content for Virtual Re-
ality environments. In particular, texture mapping is a tech-
nique widely used in real-time rendering engines to improve
the realism of materials by warping textures into the 3D mod-
els. In order to do this operation effectively—with low memory
consumption— the texture must be tileable, that is, it should
allow the concatenation of multiple copies of itself without pro-
ducing visible artifacts at the boundaries.

We propose an end-to-end method to extract the minimum
representative tile (or pattern) of an input image, which repli-
cates its original appearance when tiled. Generating these kind
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of tileable textures is a problem that has received very little at-
tention. Only recently, Moritz et al. [1] propose a solution to
synthesize non-stationary tileable textures from pictures. Our
work is complementary to theirs, that is, we aim to detect the
minimum pattern that represents the image, which allow us to
efficiently generate a novel image given repetitions of the pat-
tern as well as fit regular lattices. We take as input fronto-planar
geometrically-regular textures [2], which makes our algorithm
particularly suitable to detect the weaving color structure of fab-
rics (as shown in Figure 1) or to identify representative elements
in facades.

Our method builds on recent works that explore the feature
spaces of neural networks to perform image interpolation [3], or
lattice detection [4]. We leverage the correspondence between
the activation of features in the deep spaces of neural networks
and the location of its triggering pixels to find repeating struc-
tures. By means of a voting process, we provide the size of the
minimum tile and propose the optimal tile that represents the
image. To this end, we also apply state of the art perceptual
metrics to automatically evaluate the quality of the synthesized
image versus the original input.
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Fig. 1. Examples of three fabrics with the minimum pattern found by our algorithm (inset, in green), and novel syntheses produced by our method. Note
that the rendered images are the result of seamless tiling the minimum repeating pattern of the original image.

Our contributions are the following:

• We propose a novel end-to-end pipeline that finds the size
of the minimum repeatable pattern of an image.

• Given a candidate pattern size, we propose an algorithm
that, using a state of the art deep perceptual loss, jointly
finds and synthetize the optimal tileable pattern that bet-
ter reproduces the input image if concatenating multiple
copies of itself.

• We show how our pipeline can be used to extract the min-
imal color structure in pictures of fabrics, as well as most
frequent architectural elements in pictures of facades.

2. Related work

We are unaware of methods that can perform end-to-end au-
tomatic extraction and synthesis of repeatable patterns in single
images using a deep learning approach, as our method is ca-
pable of. Nevertheless, our work is closely related to several
topics in computer vision and graphics, including texture syn-
thesis or image blending.

Texture synthesis. Texture synthesis algorithms are typically
concerned with creating synthetic images that resemble one
or multiple exemplar images that contains different degree of
regularities [2]. A seminal work on this topic [5] proposes
an optimization-based texture stitching algorithm that performs
the synthesis by finding the optimal way of stitching different
parts of the input image with copies of itself. More recently,
Kaspar et al. [6] proposed a self-tuning algorithm that can per-
form photo-realistic texture synthesis by automatically weight-
ing guidance channels.

Convolutional neural networks have been extensible used in
texture synthesis and style transfer. Gatys et al. [7] performs
texture synthesis by minimizing a loss function which com-
pares the deep latent space of the exemplar and the synthesized
images, using gradient descent. A similar approach exploiting
feature correlations was used by Sendil & Cohen-Or [8]. Fi-
nally, Zhou et al. [9] propose a generative method which can
perform texture synthesis on regular or non-regular exemplars
by training a deep generative network to expand small crops of
the input image. Our method is loosely based on deep texture
synthesis methods. We make use of the feature spaces of neural
networks for repetitive pattern extraction and for finding an op-
timal tile that can represent the greatest amount of information
in the input image as possible. We have found that our method

is capable of performing texture synthesis of geometrically reg-
ular and near-regular textures, but it is not suitable for stochastic
textures.

Repeated pattern detection. Finding repeating patterns is a
challenging task, in part because there is no clear definition of
what a repeating pattern means in the visual domain. A com-
mon approach is to assume that the repetitive patterns lie on a
2-dimensional lattice [10], or in a planar structure on the image
[11, 12]. In terms of image descriptors used to represent image
information such as shapes or colors, we find a vast amount of
methods [13, 12, 14], that rely on Scale-invariant feature trans-
forms (SIFT) [15] as feature descriptors.

Despite the popularity of SIFT for this problem, the emer-
gence of pre-trained deep convolutional neural networks that
contain filters learned using natural images have created new
opportunities in this field. In particular, Lettry et al. [4] presents
a method to find repetitive patterns by looking for spatial reg-
ularities in the activations of filters in a pre-trained neural net-
work. Their method is capable of finding the most probable size
of the repeating pattern in the image, as well as fitting a grid that
can segment those repeating patterns. A main disadvantage of
this method is that, unlike in [12], the repeating pattern can only
be of one size, and it works better when the grid in which the
repeating pattern lies is aligned with the axis of the image and
when the image is fronto-planar. Despite those disadvantages,
we find their work to be a suitable starting point that inspired
our algorithm for geometrically regular input textures.

Image stitching. The goal of these methods is to combine dif-
ferent images with overlapping parts to create a larger image in
a seamless way, i.e., it is not possible to tell where the images
were blended. One of the seminal work in the field [5] is based
on minimizing differences between overlapping blocks to find
the optimal cuts, resulting in a near-seamless stitched image.
More recent methods simply blend the borders of the images,
but they enforce continuity and smoothness in the gradients at
different scales in the parts of the images that were blended
[16, 17, 18]. This kind of blending is more useful in situations
where the images are very similar to each other. There are so-
phisticated algorithms that can perform this task, by exploiting
symmetry [19], using graph cuts [20] or melding image patches
[21]. In our method, we simply want to stitch one image with
a copy of itself, so we do not need to deal with the amount of
irregularities that those last three methods can handle.
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Fig. 2. Illustration of our pipeline. 1) The input image is pre-processed by aligning it with the main axis and removing non-local variations [22]. 2) Using
CNN activations, we find the most consistent displacement vector, which suggests the size of the repeating pattern in the image. 3) We obtain a list of
candidate regions in which the repeating pattern is present. 4) We make each of the candidate tiles tileable with Gaussian blending and template matching.
5) We synthesize one full texture with each candidate tile and 6) compare it with the original input image using a perceptual loss. The region that showed
the smallest perceptual error with respect to the input image is the output of our algorithm.

3. Overview

Our goal, as illustrated in Figure 2, is to identify the min-
imum repeatable structure that —when tiled— can replicate
most of the overall appearance of the input image. To this end,
we leverage state-of-the-art algorithms and machine learning
models for image processing. Initially, as explained in Sec-
tion 4, we pre-process the input image by aligning it with the
main xy-axis and regularize its appearance by removing non-
local variations. Then, we use the feature space of a convolu-
tional neural network to find the size of the minimal repeating
pattern in the image (Section 5.1) and a list of candidate repet-
itive tiles (Section 5.1). For each of these candidate tiles, we
create a seamlessly tiled texture of the same size as the input
image using a combination of template matching and Gaussian
blending algorithms (Section 6.1). Finally, we find the tile that
better represents the image by comparing the tiled image with
the original input image using a state-of-the-art perceptual error
metric (Section 6.2). Hereafter, we explain why and how each
of those steps is performed.

4. Pre-processing

The input to our method belongs to the class of geometrically
regular near-regular textures, i.e. a single texton recurring on a
lattice. In particular, we require the image to be fronto-parallel
to the camera which makes the method particularly suitable for
captures of fabrics and facades. Although the input images are
in general homogeneous, they might contain small inconsisten-
cies or irregularities due to wrinkles, dust or noise. We therefore
apply an initially pre-processing step to align the image with the
main xy-axis and make the sample more homogeneous.

Fig. 3. Example of a regularized image. Left: The input image, with irreg-
ular yarns and non-homogeneous color variations. Right: The regularized
image, where those irregularities are hidden by the NLV algorithm [22].
There is a trade-off between how many details can be kept in the output
image and how regular it is.

Image Alignment. Aligning the input texture with the main axis
is a key initial step as, otherwise, the task of finding those re-
peating patterns would become significantly more challenging.
Our goal is to find the angle α such that when we rotate the
input image I by α degrees, the rotated image is axis-aligned.
As suggested in previous work [23, 24, 25], we use the Radon
Transform of a two-dimensional function for a given angle φ:
RTφ(x, y). We first filter the input image I using a Sobel oper-
ator to emphasize edges, obtaining F (I). Then, for an evenly
space set of 1000 angles in the range of φ ∈ [−45, 45) degrees,
we compute the Radon Transform RTφ(F (I)). Finally, α is cho-
sen using the following equation: α = arg maxφ

dσφ
dφ , where σφ

is the standard deviation of RTφ(F (I)).

Image Regularization. Frequently, textures present unwanted
irregularities in their structure due to, for example, geometrical
variations. Furthermore, it is also possible to find undesirable
elements, such as particles of dust or wrinkles, that are intro-
duced in the capture process and hinder the task of finding the
optimal repeatable tile. In order to make the search of the op-
timal tile more robust to this kind of noise, we make use of the
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Non-Local Variations (NLV) algorithm from Dekel et al. [22],
which iteratively transforms the input image I into one in which
the internal recurrence is maximized. To do so, it uses patch-
based processing [26] to find similar patches and optical flow
to find the smooth transformation that maximizes the presence
of those recurrent patches. In our experiments, we ran the algo-
rithm for 200 iterations and we set the hyper-parameters λ and
α to 0.1, and γ to 30. Those parameters control how similar
the original and the regularized image are to each other. Please
refer to the original publication for full details on the algorithm.
We show in Figure 3 and Figure 7 some examples of the reg-
ularization and its effects in the whole pipeline in the results
(Section 7). The result of these two steps of pre-processing is a
novel image Ī which is more regular and aligned with the XY
axis.

5. Automatic extraction of representative tiles

The goal of this step is to find a set of candidate representa-
tive tiles. We are inspired by the work of Lettry et al. [4], which
introduces the idea that when a pattern is regularly repeated in
a grid, the same filters in a deep convolutional neural network
activate in regularly-spaced regions of the image. We build on
that work and simplify their algorithm to look for the size of
the most consistent repeating pattern in an image. While their
goal is fitting a lattice using the repeating pattern found by their
method, ours is to find the size of the repeating pattern and a list
of candidate representative tiles. In Section 5.1, we first present
our method to find the size d∗ of the minimum tile and in Sec-
tion 5.2 we show how we identify the list of candidates tiles
{t}.

5.1. Pattern size estimation

Convolutional neural networks learn hierarchical representa-
tions of features that are useful for many tasks, including im-
age classification, object detection or style transfer [27, 28, 29].
This representation of features is done in the form of convolu-
tional filters, that can be used to look for specific patterns in
images. Moreover, deep CNNs learn features that increase in
complexity as deeper layers depend on the filters learned by
previous layers in the network [30]. For example, the first lay-
ers of a deep CNN usually learn to detect edges and other low
level features, whereas deep layers tend to learn higher-level
representations of features, such as objects or complex shapes.
Consequently, a deep CNN can be considered as a set of filters
with different levels of abstraction that activate when a particu-
lar feature is present on a region of an image. A main advantage
of using deep CNNs instead of manually engineering a set of
filters is that they can learn those filters from data, thus making
them more robust and independent from human assumptions or
prior knowledge of the problem. Leveraging the multi-level ca-
pability of CNNs filters, the key idea of this step is to find repe-
titions in image space of peaks of activations in filter space. The
most frequent distance between peak activations in both image
and feature spaces is the most probable size of the minimal tile.

In every layer of a deep CNN, there are filters that acti-
vate more than others, because there are features that are more

present than others in the input image. To reduce the amount of
computation in our algorithm, we only keep the set of filters Fl

with meaningful responses as follows:

Fl = { fl | µ fl > δ ·max(l)} (1)

where fl ∈ Fl is a filter of a layer l ∈ L, L is the set of
convolutional layers in the deep CNN, µ fl is the mean activation
of each filter, max(l) is the maximum µ fl in the layer l, and
δ = 0.65 [4].

To compute the size of the repeating pattern, we feed the
regularized image to our deep CNN. Then, for each fl, we
find the set of pixels P fl that correspond with activation peaks,
i.e. the pixels in the input image that maximally activate fl:
P fl = {p ∈ I | f p

l ≥ 2σ fl + µ fl }, where f p
l is the activation value

of pixel p in layer l, µ fl is the mean activation of each filter, and
σ fl its standard deviation. Then, we find a set D fl of displace-
ment vectors by computing a vector for each pair of peak acti-
vations in each filter D fl = {di, j = |pi− p j| | ∀pi, p j ∈ P fl , i > j},
where | · | denote element-wise absolute value on vectors. Each
of the displacement vectors di, j ∈ D fl is a candidate tile size.

Given that there are different numbers of filters in each layer
in our model, we need to normalize how much each vector in
each filter will contribute to the final estimation of the optimal
tile size. Thus, we divide each vector by the number of vec-
tors |D fl | in each layer and filter. Each displacement vector
contributes to a Hough voting space V : R2 → R, using the
formula:

V[x,y] =
∑
l∈L

∑
fl∈Fl

1
|D fl |

∑
di, j∈D fl

di, j (2)

V is smoothed using a 2-dimensional Gaussian filter [31]
with a kernel size of (13, 13). The optimal displacement vec-
tor, which has the dimensions of our candidate minimal tile, is
defined as:

d∗ = (arg max
x
V[x,0], arg max

y
V[0,y]) (3)

We restrict the size of d∗ so d∗a >
dima
20 , a ∈ {x, y}, where dima

is the dimension in pixels of the input image in the axis a. We
illustrate this voting space in Figure 4. Given that we are using
images with a size of 227 × 227, we force the displacement
vector to be of at least 12 pixels in each dimension.

In comparison with Lettry’s model, we simplify their dis-
placement vector model significantly, as we do not assume that
each vector follows a bi-variate Gaussian distribution. Conse-
quently, we do not need to assume that there are different stan-
dard deviations for each layer in the network, which reduces
the number of hyper-parameters that need to be tuned. More-
over, we do not take into account filters that are not significantly
activated (Equation 1). We discard those filters for the whole
tile extraction process, whereas they do not consider them in
later stages of their pipeline, when building their implicit pat-
tern model.
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5.2. Candidate tiles extraction
Using the optimal tile size d∗ found by the previous step of

the algorithm, we now want to find the regions of the input im-
age that are more consistent with it. That is, we want to find the
pixels in the input image that correspond to the activation peaks
that are most consistent with the optimal displacement vector.
This process will help us find candidate crops of the input im-
age that, when tiled, can replicate the whole appearance of the
input image.

For all the filters fl ∈ Fl, we exponentially weight each
filter according to how consistent their displacement vectors
di, j ∈ D fl are with the optimal vector d∗. The weights are also
normalized using the number of vectors in each filter |D fl | as
follows:

w fl =
∑

di, j∈D fl

(
1

|D fl | + λ

)
exp

(
−
‖di, j − d∗‖2

2σ2

)
(4)

where the parameter λ is a prior on the number of expected rep-
etitions, and is set to 0.8 following previous work [4]. On the
contrary, as opposed to previous work that require a different
σ per layer, we set σ to 1 for every layer so as to avoid mak-
ing some layers more important than others. We empirically
found that this value of σ yielded results comparable to those
of previous work, without the need of optimizing the value of
this parameter. Besides, our data showed regular patterns of
different levels of abstraction, which are typically represented
by different layers in the neural network. To avoid biasing one
level of abstraction over others, we set the same value to all the
layers.

Once we know, for each layer, how consistent their displace-
ment vectors are with respect to the optimal vector, we re-
compute the points in which each of the filters were maximally
activated, and, for each pixel p in the input image, we compute
the weighted sum of all the activation peaks p ∈ P fl , obtaining
a weighted map M(x, y) of activations (see Figure 4):

M(x, y) =
∑
l∈L

∑
fl∈Fl

(w fl · p(x, y)) (5)

This map M can be understood as a map of probabilities that
shows how likely each pixel (x, y) is to be the point in which
a candidate tile starts. Using a standard local maxima extrac-
tion algorithm, (using a neighborhood side of 30), we obtain a
small list of candidate points C. Note that both the candidate
points and the size of the displacement vector are represented
in the dimensions of the re-scaled image that feeds the network.
Consequently, we apply a proportional re-scaling operation to
match the size of the original input image. After this operation,
we obtain the list of candidate tiles ti ∈ T by taking each origin
point ci and extending a window of size 2d∗:

ti ← Ī
[
ci(x) : ci(x) + 2d∗x, ci(y) : ci(y) + 2d∗y

]
∀ci ∈ C (6)

This step is different from previous work, which fit an Im-
plicit Pattern Model. This model groups points together by
computing a centroid of points so as to reduce the number of
extracted tiles.

Fig. 4. Illustration of the displacement vector and activation map extrac-
tion. Left: Original input image where the local maxima of the activation
map are represented using red dots. Right: Computed displacement vec-
tor map. Yellower points represent more consistent votes than blue points.
The red dot is the optimal d∗. It is worth noting how the red dots tend to
follow a grid that matches the yarns in the fabric, which suggests that the
network has been maximally activated by yarns.

6. Optimal tile extraction and synthesis

Once the set T of candidate tiles has been obtained, the goal
is to find the optimal tile t∗ ∈ T such that, when tiled, it looks
as close as possible to the input image. This is challenging as
not all tiles are equally suitable for tiling. That is, although
they have the same size, they represent a different region of
the image which might contain different amount of noise and
non-regular variations. The straightforward process of stitch-
ing one image to itself might yield inconsistencies in the tran-
sition gradients. This can be solved as an optimization problem
that guarantees smooth gradients and apply warping techniques
to maintain structural regularity [1, 32], however, these algo-
rithms tend to be computationally very complex and inefficient.
Our method for finding the optimal tile aims to solve these two
problems in a simple and efficient way: We tile the image using
Gaussian blending and template matching (Sections 6.1) until it
fits the size of the original image, and then compare each tiled
image with the input image with a perceptual loss (Section 6.2).

6.1. Gaussian blending for seamless tiling
In this section, we propose a method which is capable of

transforming our ti into seamlessly tileable structures, with a
combination of template matching and Gaussian blending. Let
tl and tr be two copies of the same tile, that we want to blend
together horizontally at an optimal position with a smooth tran-
sition, obtaining tb.

First, we extend the borders of the tile by a 10% in each di-
mension by using the original image, we call this the extended
boundary. Both tl and tr become (n × m) dimensional images.
Then, using cross-correlation template matching [33], we look
for the optimal position of the overlapping tiles restricting the
search to the extended boundary, and also restricting the direc-
tion of the displacement in the X and Y axis for horizontal and
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vertical boundaries, respectively. As a result of this step, we ob-
tain a new image which results from stitching the two tiles at the
optimal position. Assuming the overlapped area has (dx×m) di-
mensions, our blended image tb has a size of (2n−dx,m) pixels,
and is defined as follows:

tb[0 : n −
dx

2
; 0 : m]← tl[0 : n − dx; 0 : m] (7)

tb[n : 2n −
dx

2
; 0 : m]← tl[dx : n; 0 : m] (8)

In the overlapped area we alpha-blend [34] both images with
a variable alpha that depends on the distance to the boundary
following a univariate Gaussian distribution, which is symmet-
rical around its mean:

tb((n − dx) + x, y)← α(x)tr(x, y) + (1 − α(x))tl((n − dx) + x, y);

(9)

α(x) =

∫ x

−∞

1
√

2πσ2
e−

(x−µ)2

2σ2 dx (10)

where 0 ≤ x ≤ dx, 0 ≤ y ≤ m, µ = dx
2 and σ = 2. The value of

σ controls how smooth the transformation is. The smaller the
value of σ, the less seamless the tiling will be, but more detail
is preserved. An equivalent method is used to blend the images
vertically, resulting in an overlap of size (2n − dx, dy) and a tb
of total size (2n − dx, 2m − dy). As tb has four repetitions of the
original ti, we transform ti by cropping tb so we only take into
account one repetition:

ti ← tb[
2n − dx

2
: 2n − dx,

2m − dy

2
: 2m − dy] (11)

6.2. Deep perceptual loss

Given the list of generated candidate tiles, we want to choose
the best representative of the perceptual information contained
in the regularized input image Ī. To this end, we define an er-
ror metric that summarizes into one scalar number, the differ-
ence between a pair of images. Pixel-wise comparisons, such
as the L1 or L2 norms have been proven to be ineffective for
this task [35]. Instead, it has been recently shown that deep
perceptual metrics, which compute the difference between im-
ages by taking into account how different are the activations
in the convolutional layers of a deep CNN, resemble how hu-
man perception behaves, better than any other known metrics
[35]. They have been successfully used in several computer vi-
sion problems, most notably texture transfer or image-to-image
translation [36].

We follow previous work [7, 9] and compute a Style Loss
using the activations of the ReLU layers of a pre-trained VGG19
deep CNN. As in Zhou et al. [9], we choose the layers relu2 1,
relu3 1, relu4 1, and relu5 1 as our feature maps. Let Ī be
our regularized input image and It be the image that is created
when tiling the tile t until it has the same dimensions as Ī. A
layer l in the VGG network has Nl filters, each of size Ml. Each
feature map can be represented as a matrix F l, where F l

jk is the

activation of the filter j at position k. A Gram matrix of a layer
l is defined as the inner product between two feature maps i and
j: Gl

i j =
∑

k F l
ikF l

jk. The style loss between two images in a
particular layer is defined as:

El(Ī, It) =

∑
i, j(Gl

i j(Ī) −Gl
i j(I

t))2

(2NlMl)2 (12)

The total style loss is the weighted sum of the error in all
the layers that are considered: Lstyle(Ī, It) =

∑
l wlEl, as illus-

trated in figure 5. We weight each of the ReLU layers men-
tioned above using the same values as in [9]: wl = 1000

N2
l

.

ℒ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑤𝑤2𝐸𝐸2 ̅𝐼𝐼, 𝐼𝐼𝑡𝑡 + 𝑤𝑤3𝐸𝐸3 ̅𝐼𝐼, 𝐼𝐼𝑡𝑡 + 𝑤𝑤4𝐸𝐸4 ̅𝐼𝐼, 𝐼𝐼𝑡𝑡 + 𝑤𝑤5𝐸𝐸5( ̅𝐼𝐼, 𝐼𝐼𝑡𝑡)

𝑡𝑡

𝑡𝑡

̅𝐼𝐼

Fig. 5. Illustration of the perceptual loss used in our pipeline. The image It

is the crop t tiled so that it fits the size of the input image Ī. Both images
are passed through a VGG-19 network and the latent spaces for the ReLU
layers are compared using the equations above.

The VGG19 was trained on (224× 224) dimensional images.
As we did when computing the activation peaks in for the dis-
placement vector calculation, we re-size Ī and It to the size
that the network expects to receive. We perform this opera-
tion adding an adaptive average pooling [37] layer on top of the
network, which adapts images of any size to the wanted dimen-
sions. It is worth mentioning that other deep perceptual losses
have been proposed in the literature, like a feature reconstruc-
tion loss [38], but we choose the style loss as it can represent
color differences more robustly than losses that are designed to
represent differences in structure or shapes. As our input images
contain fabrics, which typically show more variation in colors
than in structure, the style loss is more suitable for this task.

Optimal tile. We obtain the optimal tile t∗ as the one that mini-
mizes the perceptual error between the regularized image Ī and
the tiled image It:

t∗ = arg min
t
Lstyle(Ī, It) (13)

7. Results

Implementation. We use an AlexNet [39] pre-trained on the
ImageNet [40] dataset as our deep CNN model to compute the
repeating pattern size, using the PyTorch framework [41]. This
model provides a rich variety of filters and is lightweight com-
pared to deeper models, such as VGG-16 or Inception-V3 [42].
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Image
ID

Pre-processing Minimum Tile Estimation and Synthesis Total
NLV

(Sec 4)
Size

(Sec 5.1)
Candidates

(Sec 5.2)
Optimal
(Sec 6) Total

#1 2432 48 1 17 67 2499
#2 2183 57 1 11 70 2253
#3 2059 35 0 9 44 2103
#4 2104 32 1 19 52 2156
#5 1910 16 2 15 34 1944
#6 2308 54 1 12 67 2375
#7 2119 41 2 16 59 2178

Mean 2159 41 1 14 56 2215

Table 1. Time in seconds of every step of our pipeline. The most time
consuming part is the pre-processing step due to the NLV regularization
algorithm which takes over one hour for images of size 1920x1080. The
minimum tile estimation and synthesis takes less than a minute on aver-
age. Note that to use NLV regularization is optional and our method can
also work without it reasonably well. Please refer to figures 3 and 7 for ex-
amples of the influence of using NLV, and Figure 8 for an example without
it.

As we need to find where in the input image each filter is max-
imally activated, using deeper models would increase signifi-
cantly the time that it takes to find the most consistent repeat-
ing pattern, without necessarily increasing the accuracy of our
results. This network was trained on 227 × 227 dimensional
images, therefore we re-size our input image to that size and
feed it to the network after filtering it with bilateral filter [43]
to remove noise but maintain the relative intensity of the gradi-
ents in the image. It is worth noting that we are not using the
fully connected part of the AlexNet model, which allows us to
use images of any size. Nevertheless, the network has only been
trained on small images, and, consequently, the filters that it has
learned are related to features found in small images and may
not translate to images of a greater size. The main bottleneck
of our algorithm, as shown in Table 1 is the NLV regularization
step (Section 4), which usually takes around 40 minutes for im-
ages of size 1920x1080. This is a reasonable resolution for this
step since a smaller image would result in an over-smoothed
regularized image. We believe its implementation could be op-
timized but this was not tested. Moreover, if the input image is
sufficiently regular, as shown in Figures and 7 and 8, this step
is not necessary. Extracting the CNNs activations and the op-
timal tile usually takes less a minute. In comparison with the
original implementation of Lettry’s, our algorithm is consid-
erably faster. They do not report exact timings of their experi-
ments, but they mention it takes from tens of seconds to minutes,
whereas our implementation never surpasses the 60 seconds of
computational time.

Qualitative evaluation. Figures 1 and 7 show the results of our
algorithm when applied to scanned fabrics. In the majority of
the cases, when tiling the optimal tile t∗, the resulting synthe-
sized image can fully replicate the color structure of the whole
fabric with high accuracy. By regularizing the image, we ob-
serve what was expected: an increase in the structural and color
regularity of the image helps the overall performance of our al-
gorithm. This can be seen in the third row of Figure 7: Small
shadows and wrinkles in the capture cause a too small size of
the tile. In some fabrics, this regularization has the cost of
eliminating some information in the input image, but this never
translated into a wrong estimation of t∗. The result in the red-

#1 4.716 10.432 12.679

Fig. 6. Example of the result of our algorithm for image #1 in Table 1. From
left to right, the tiles with the best, median and worst perceptual error are
shown, with their respective Lstyle values. We show two repetitions of each
tile to help the visualization of the artifacts created when tiling.

striped fabric was interesting. It has structural wrinkles that are
detected by our algorithm, but there is no regularity in them.
When finding the optimal tile t∗, our perceptual loss function
detected that the most optimal tile had three evenly-space wrin-
kles. This is not the obvious choice, as there are many other
candidate tiles with the same size, but, when tiled, the image
looks like a realistic fabric. We additionally show in Figure 8
and in the supplementary material the results of our algorithm
when applied to mosaics with satisfactory results.

In terms of the result of the tiling, we can see that, despite
the borders of t∗ being distorted by our Gaussian blending algo-
rithm, the tiling does not create any unwanted artifacts. Due to
the regularity in the data capturing process and its front-parallel
nature, the repeating pattern in the images are generally axis-
aligned, thus making them ideal for tiling.

When our algorithm is not capable of finding the minimal
structure, it is because not enough repetitions were present in
the input image, or because the pattern has suffered excessive
geometrical deformations. An example of such deformation is
shown in Figure 9. In this case the minimal tile is bigger than
the real one because of the shadows produced by the wrinkles
and the deformation of the pattern. Nevertheless, our algorithm
has obtained a tile that creates plausible seamless images with
consistent deformations. Finally, in some cases, the extracted
optimal tile contains several repetitions of the color pattern.
This is a consequence of our constraints on the minimum size
of d∗. However, even if the tile t∗ is bigger than the actual color
pattern, it is always smaller than the original input image, which
is an advantage for applications such as rendering, where there
are memory requirements that make smaller textures quite de-
sirable.

Quantitative evaluation. In the supplementary material, we re-
port a quantitative evaluation on the quality of the synthesis in
terms of its perceptual loss. For the images in Table 1, we show
the tiles that yielded the best, worst and median perceptual er-
rorLstyle. This perceptual metric cannot be used to compare the
quality of the synthesis of different input images, because the
scale of the loss function depends on the size of the tile. Never-
theless, it succeeds on distinguishing between crops of the same
image that are easily tileable and those that are harder to tile
smoothly. More precisely, it is able to find the tile that replicates
the most information in the input image as possible and that is
the most seamlessly tileable. For instance, in Figure 6, we can
see that the optimal texture can be tiled more smoothly than the
other two textures that are reported. We show the results on
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the non-regularized images so as to make the differences more
visible.

Comparison with Lettry et al. [4] As explained before in Sec-
tions 5.1 and 5.2, our pipeline builds upon the work of Lettry et
al. However, there are meaningful differences in terms of effi-
ciency and target application. Our goal is to find one represen-
tative tile that allow us to seamlessly synthesize new textures.
On the contrary, their purpose is to fit a regular lattice by means
of identifying points in the image that correspond to the most
repetitive elements. We show in Figures 10 and 11 comparisons
with such method. The two examples of Figure 10 show simi-
lar results for both methods. We build the lattice by extending
vertically and horizontally the size of the optimal tile, starting
from that tile as the origin. Lettry’s method uses RANSAC al-
gorithm to fit an elastic model using the identified maxima. In
addition, in Figure 11 we show an example where our simplifi-
cation fails to identify the most repetitive element. The reason
is because their probabilistic model is more robust and able to
identify the repeating pattern even in the presence of low fre-
quency details. Our simplification assumes that all layers have
the same standard deviation, and thus, the method is fine-tuned
for high frequency textures, ignoring patterns of low frequency
activations.

8. Conclusions and future work

We have presented an end-to-end pipeline capable of the ex-
traction and synthesis of repeating patterns in single images.
Our method combines state-of-the-art image regularization, re-
peating pattern detection and deep-learning based perceptual
losses, making it robust to non-local variations in the structure
of the input image, as well as capable of handling repeating
patterns of different sizes and shapes. Our results demonstrate
that this pipeline is capable of successfully extracting the color
pattern in woven fabrics, as well as being able of synthesizing
them by adapting image stitching algorithms to this domain.
All the methods in the pipeline are domain-agnostic, and, con-
sequently, it should work for any domain in which fronto-planar
images with repeating patterns are available.

We have seen that the weighted combination of features in
the deep neural network can be used successfully to find color
structure in pictures of regular textures. In convolutional neural
networks, deeper layers of the network have a bigger receptive
field than filters in the early layers of the network and as such,
they can detect objects and shapes that are larger than the re-
ceptive field of the kernels in the first layers in the network.
Consequently, our algorithm has shown to be invariant to the
repeating pattern sizes.

Our method could be extended in several ways. First, a future
potential application that could benefit from of our technique,
as shown in Figure 10, is to find representative elements in pic-
tures of facades [44, 45]. Second, the pipeline is designed
to work in any domain in which repeating patterns are present.
Nevertheless, if we were to use the pipeline only in one visual
domain (e.g. woven fabrics), it should be worth exploring the
possibility of fine-tuning the neural networks in the pipeline so
that the filters learned by them are more closely related to that

domain. This could be beneficial for both the repeating pattern
size extraction and for the optimal tile synthesis. Finally, the
network that was used to find the repeating pattern is a baseline
AlexNet, which is not a state-of-the-art model in image classi-
fication problems. We chose this network due to its simplicity
and widespread availability of pre-trained versions on-line. All
the same, there are CNN models with less parameters and a sim-
ilar level of accuracy [46] or more complex but with a richer set
of filters, like the VGG-19 model we used for the perceptual
loss calculation. Therefore, it should be possible to improve
this algorithm by updating those steps with more recent deep
learning models.
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Fig. 10. Lattice extraction and comparison with Lettry’s [4] work. Left:
Theirs, as extracted from their paper. Right: Our results on the same
images, using our simplification of their algorithm. It can be seen that both
the tile size and the regions that were found are not significantly different,
which shows that our modifications to their algorithm are not detrimental
to its performance.
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Fig. 11. Failure case for our method. Left: input images. Right-top: Let-
try’s voting space and lattice. Right-bottom: our voting space and lattice.
Note that due to our simplification of the model or inappropriate parame-
ters we do not handle textures with low frequency variability.


