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Abstract Intrinsic imaging or intrinsic image decompo-
sition has traditionally been described as the problem of
decomposing an image into two layers: a reflectance, the
albedo invariant color of the material; and a shading, pro-
duced by the interaction between light and geometry. Deep
learning techniques have been broadly applied in recent
years to increase the accuracy of those separations. In this
survey, we overview those results in context of well-known
intrinsic image data sets and relevant metrics used in the lit-
erature, discussing their suitability to predict a desirable in-
trinsic image decomposition.
Although the Lambertian assumption is still a foundational
basis for many methods, we show that there is increasing
awareness on the potential of more sophisticated physically-
principled components of the image formation process, that
is, optically accurate material models and geometry, and
more complete inverse light transport estimations. We clas-
sify these methods in terms of the type of decomposition,
considering the priors and models used, as well as the learn-
ing architecture and methodology driving the decomposition
process. We also provide insights about future directions for
research, given the recent advances in neural, inverse and
differentiable rendering techniques.
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1 Introduction

Images, as two-dimensional projections that depict the
world around us, can be described as a harmonious combi-
nation of colors, shades, and shadows. Understanding how
an image is generated by the complex interaction between
light and matter has been a subject of research for decades:
the light rays that carry all the information about a given
scene are integrated into the RGB values of the camera sen-
sor, turning the process of recovering back the original scene
into an ill-posed problem. In the computer graphics and vi-
sion literature, two main approaches target the problem of
recovering the underlying properties of the scene elements
(such as lights, geometry, and materials): inverse rendering,
and intrinsic decomposition methods. Although they share
a common root, these two problems have been tradition-
ally tackled from two perspectives resulting in different out-
comes.

Inverse rendering methods have the goal of represent-
ing the scene digitally in a way that it allows to photo-
realistically re-render novel views of it. This means esti-
mating the parameters required by the render equation such
as geometry, lights, materials, or the camera model. This is
extremely challenging given a single image as input, even
forward render engines sometimes merely approximate the
complex light phenomena. Traditional approaches relied on
manual intervention to aid modeling arbitrary geometries
[101], or established priors about the shape narrowing the
scope to e.g. faces [148,13], humans [61], flat materials [33,
32], or single objects [48]. Nowadays, inverse rendering
has undergone a major disruption in the way the problem
is being tackled: First, deep neural networks, as powerful
universal approximators, have reduced the need to define
the scene elements explicitly, as shown by neural render-
ing methods [126]. Second, differentiable renders [75,100,
144,85], by allowing to compute direct derivatives of the
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images with respect to arbitrary scene parameters, have en-
abled physically-based end-to-end inverse parameter esti-
mation. Neural rendering techniques are reaching high de-
grees of realism for reproducing any kind of scene [93,87],
although this comes at the cost of limiting the manipulation
of the scene parameters. Differentiable rendering, although
it cannot yet cope with arbitrary scene setups, is showing
promising results towards this end.

Intrinsic decomposition, which can be seen as a sim-
plification of inverse rendering for general scenes, aims to
provide interpretable intermediate representations that prove
useful for intelligent vision systems or to allow local mate-
rial edits that do not require changes in lighting or view-
point. The intrinsic scene model [7] described the world as
the combination of three intrinsic components –surface re-
flectance, distance or surface orientation, and incident illu-
mination. A fundamental observation for defining these lay-
ers is that the human visual system understands them inde-
pendently of viewing and lighting conditions, even if it is not
familiarized with the scene or the objects. In practice, most
of the methods have referred to intrinsic image decomposi-
tion as the problem of separating the reflectance and shad-
ing layers, assuming a Lambertian world. The Retinex the-
ory [71,51] was fundamental for many of the algorithms de-
veloped during the last two decades [38,40,11,15,10] pro-
viding some basic priors about how shading and reflectance
typically behave in our retina: a change in reflectance cause
sharp gradients, while a change in shading cause smooth
gradient variations. Until recently, most methods relied only
on such kinds of cues (or heuristics) derived from low-level
understanding of the physics of the light or empirical ob-
servations. With the advent of deep learning, current solu-
tions have posed the problem as end-to-end network archi-
tectures which learn to predict the reflectance and shading
layers given huge amounts of data as training. A key dif-
ference with respect to traditional solutions is that learned
models also take into account the global semantics of the
scene, while previous methods performed mostly at the lo-
cal level (gradients and edges).

Deep learning-based solutions for the intrinsic decom-
position problem have facilitated more complex scene mod-
els beyond the Lambertian one [88,130,50,70], and also to
estimate some of the scene elements, such as illumination
and geometry [56,139,114,146,77]. While this will ulti-
mately enable photo-realistic arbitrary scene manipulations
(goal shared with image-based inverse rendering), some crit-
ical aspects make evaluating the contributions of each new
method a difficult process: there is a variety of datasets that
contain diverse types of objects, scenes, and labels; non-
standardized and low-quality quantitative metrics to com-
pare the methods with; and a lack of a unified methodology
to universally evaluate the progress.

With this survey, we would like to review the current
status of learning-based solutions that may serve to inspire
and guide future research in the fields of computer graph-
ics and vision. In particular: First, we review the connec-
tion of the intrinsic decomposition problem from a forward
and inverse physically-based rendering perspective, hoping
that this will clarify doubts and inspire more complex ap-
proaches outside the Lambertian assumption. Second, we
show a taxonomy of current datasets, learning strategies, and
architectures, putting them in context of traditionally non-
learning-based solutions, we also discuss their main advan-
tages and limitations. Third, we gather quantitative evalua-
tions of these methods according to commonly used metrics
and show qualitative results for difficult cases. Finally, we
conclude with open research opportunities.

In addition to the review presented in the paper, we pro-
vide a web project which will contain the compendium of
datasets, metrics, papers and their performance, which we
will keep updated with the latest research.

Related Surveys Intrinsic image decomposition problem
has been reviewed before in the STAR report of Bonneel
et al. [14], where several –non-deep learning-based– algo-
rithms were evaluated in the context of image editing tasks:
logo removal, shadow removal, texture replacement, and
wrinkles attenuation. Since then, dozens of new papers have
tackled the problem from a purely data-driven perspective.
Our work is complementary to theirs, as we review the ap-
proaches not covered there, which propose solutions based
on deep learning frameworks. Neural rendering has been re-
viewed in a recent survey [126]. Similarly, inverse rendering
and image-based rendering has been widely studied in sev-
eral surveys: for generic scenes [103], for particular applica-
tions like faces [148] or materials [32], and for image-based
3D object reconstruction [48]. Despite the vast amount of
papers tackling both the problem of intrinsic decomposi-
tion and inverse rendering, the explicit connection between
both fields has not been addressed before. Moreover, as we
will discuss in this paper, the connection of intrinsic imag-
ing with the actual optical properties of materials is very
relevant, and thus, a survey on its representation and acqui-
sition [46] could be a good reading for practitioners in the
field.

Scope In this survey, we cover several recent papers that
propose a deep learning-based solution to estimate the in-
trinsic components of the scene given a single image as in-
put. We thoroughly review those which include quantitative
metrics of performance, either using the IIW dataset [10],
which contains indoor real scenes and scores given by hu-
man raters, or using the MIT Intrinsic dataset [45], which
contains isolated painted figurines. Although most of the pa-
pers discussed use the Lambertian material model, some of

http://www.elenagarces.es/projects/SurveyIntrinsicImages/
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the most recent ones include more complex ones or model
other scene elements such as illumination or geometry. This
latter approach resembles image-based inverse rendering
methods, so we further discuss the ones which explicitly
model part of the scene elements (illumination, material, ge-
ometry). Among these methods, we include a brief overview
of the ones which target particular domains (faces, humans,
flat materials). Finally, we do not review methods that tar-
get specific applications such as relighting, colorization or
texture editing, or intrinsic decomposition methods which
do not provide quantitative performance comparisons, un-
less they prove useful to facilitate the discussion.

2 Theoretical Background

If we look at any simple scene surrounding us, such as the
photograph in Figure 1, we can find a plethora of optical
interactions: indirect lighting (color bleeding), internal scat-
tering in translucent objects, caustics, anisotropic and glossy
reflections, etc. which are far from the traditional assump-
tions in intrinsic imaging of diffuse (lambertian) shading,
direct lighting and diffuse albedo materials.

Fig. 1 Example of light transport and material interactions. Secondary
bounces of light produce reflection caustics (chrome pen) and color
bleeding from the green book. The wax candle exhibits multiple in-
ternal (subsurface) scattering of photons. The yellow silk fabric of the
book cover shows specular anisotropic reflections due to yarn orienta-
tion. Figure inspired by [110].

In this section we provide an overview of the theoretical
background behind the image formation model, its deriva-
tion for non-diffuse materials, and the link with physically-
based and inverse rendering. As we will show in following
sections, only a few of these physical aspects are considered
in the reviewed methods, but we think that this theory is rel-
evant for the discussion of future lines of research.

For a deeper dive into any of the concepts quite briefly
described in the following subsection, we recommend read-

ing the book on physically based rendering by Pharr et
al.[104].

2.1 Physically-based rendering

The color and luminosity at any point of an image, the in-
coming irradiance, is proportional to the sum of the outgo-
ing radiance from all the visible points of the scene towards
the camera sensor at the corresponding pixel, I, resulting
from multiple interactions between light and matter in the
scene. Naturally, this is a simplification: even if we consider
the camera lenses and color filters as part of the scene, the
interaction of irradiance and the sensor point affects the re-
sult, and both electronic and film cameras have specific ad-
ditional image formation steps which can be simulated. In
physically-based rendering, the general approach to com-
pute this value is to use Monte Carlo estimators of the pixel
and shading integral [60], which has the general form of:

I =
∫

χ

f (x,Θ) dx (1)

where f is a function that defines the radiance towards pixel
I and is defined on a domain χ , generally a unit sphere,
or the set of all the surfaces (A) in the scene, and depends
on the scene parameters Θ , which might include the defini-
tion of the geometry (normals, z-depth, vertices), material
(albedo, BRDF), or illumination sources – far-field environ-
ment lighting, or 3D light emitters (point, area, objects).

The value of I is defined for a given λ , which is the
spectral band of the camera sensor. We could define it for
as many bands as desired (including non-visible ones) but in
practice, the majority of camera sensors mimics the human
visual system and are commonly three-band: λ ∈ {R,G,B}.
In subsequent rendering equations, we will simplify the no-
tation by assuming a single-band, and omitting the term λ .

Equation 1 is an integral of integrals (see Figure 2): to
account for all the light arriving at a surface point p1 to a
sensor pixel at p0, we have to estimate all the contributions
of light from all the surfaces of the scene, recursively trac-
ing paths bouncing in surfaces (p2, p3...pn) until we reach
the light emitted by a source Le(pn→ pn−1). This is referred
as the Light Transport Equation (LTE) in rendering and it is
another way of seeing the equation 1. To compute the radi-
ance reaching the pixel I, that is from p1 to p0 in Figure 2,
we would need to solve:

L(p1→ p0) =
∞

∑
k=1

P(p̄k) (2)

with P(p̄k) being the radiance scattered over a path p̄k with
n+1 vertices (p0,p1,p2, p3...pn) and computed as:

P(p̄k) =
∫

A

∫
A
...

∫
A︸ ︷︷ ︸

n−1

Le(pn→ pn−1)T (p̄k)dA(p2)...dA(pn)
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(3)

Remember that we can integrate over solid angles in the unit
sphere, or surfaces (A) of the scene, being dA(pi) the differ-
ential area at point pi. Note the term T (p̄k), named through-
put of the path: the fraction of radiance from the light source
that arrives at the camera after all of the scattering at vertices
between them. The total transmitted energy will be reduced
at each interaction event, as some wavelengths (colors) are
absorbed or scattered away from the observer. This is a com-
mon trade-off decision in many Monte Carlo rendering en-
gines; longer paths per sample are costly to compute, while
contributing with less and less energy with each additional
vertex, but in some scenes, they might be very relevant to
reduce variance (noise) and converge with less samples to
an accurate image.

Fig. 2 Example of light transport, connecting a light source p3 to a
pixel I at p0. Multiple paths like this one will need to be explored to
provide a good statistical estimate of the radiance from p1 to p0. Figure
inspired by [104].

Moreover, if there are interactions with non-opaque ma-
terials (human skin, cloth, marble) or participating media,
such as liquids or smoke, we have to integrate volumetric
scattering interactions of photons along the path between the
light sources and the camera sensor pixel, requiring a more
complex mathematical model such as the Radiative Trans-
port Equation (RTE).

2.2 Geometry and Space

If we take a look at Figure 2, we can observe that materials
are distributed on discrete 3D objects: the table and the cup,
and even the light source if we consider it as an emissive ma-
terial. We can assume that one of the most important Θ pa-
rameters is geometry, usually in the form of 3D vertices and
edges, normals (N) or depth maps (D). Please note that, in

contrast to a a full 3D mesh, a single camera-view depth
image (a.k.a. Z-buffer) is an incomplete definition because
the non-visible surfaces are undefined and the reflected light
paths cannot be traced behind the visible objects. For exam-
ple, Nimier et al.[100] require multiple views of a smoke
volume in order to reconstruct its 3D density distribution by
inverse rendering.

There are additional ways of defining this geometry,
such as implicit surfaces, but the material distribution is
more complex when there are no clear surface boundaries.
That is the case of heterogeneous participating materials:
human skin, airlight, mixed liquids, smoke, etc., where light
transport between two points has to be in turn evaluated
along the path to account for all the possible scattering ef-
fects. For instance, imagine a small cloud of vapor between
points p1 and p2 in Figure 2, at each infinitesimal step along
the path between those points, there will be a possibility of
absorption (collision with a water particle) that will reduce
the energy, but there is also a possibility of receiving incom-
ing energy (not emitted by p2), as the cloud itself is receiv-
ing direct illumination from the light source and multiple
scattering events distribute the light across its volume.

In order to compute the rendering equation in volumetric
media, a distribution of parameters is required at any point of
the space, not only on the 3D surfaces. The usual represen-
tations include solid 3D implicit functions (for instance 3D
Perlin noise, used in cloud procedural generation), meshes
and distance fields, or discrete volumetric grids which store
the scattering probability function at any point of the space
(also known as phase function) by means of voxels.

2.3 Materials

Each time the light interacts with a material, there is a loss
of energy and a transformation of the original wavelength
reflected towards the observed direction. In rendering, the
result depends on the intrinsic material response for those
two angles: incident light and viewing direction (e.g.: the
camera, or another element of the scene). For surfaces, this
response is modeled with a Bidirectional Reflectance Distri-
bution Function (BRDF) fr(x,ωi,ωo) which yields at each
particular 3D surface point x, and for each incident direc-
tion ωi, the fraction of reflected radiance observed from a
direction ωo.

The total reflected radiance L at any point x can be ob-
tained by integrating with Equation 4 over the positive hemi-
sphere Ω+, to sample the whole incident light attenuated by
the cosine term (dot product between the incident light di-
rection Li and the normal of the surface N) [60]:

L(x,ωo) =
∫

Ω+
fr(x,ωi,ωo)Li(x,ωi)(ωi ·N) dωi (4)
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Note that by integrating the computed radiance L(x,ωo)

of the points sampled from p0 at the camera sensor (x =

p1,ωo = p1− p0, see Figure 2), we are obtaining the irradi-
ance at the sensor and the corresponding image pixel values
(I in equation 1). Naturally, even the pixels themselves can
be sampled several times and integrated over the camera sen-
sor with another Monte Carlo estimator to minimize aliasing
effects.

The BRDF can be extended with a Bidirectional Trans-
mittance Distribution Function (BTDF) to conform a full
Bidirectional Scattering Function (BSDF), defined in the
full sphere Ω . The model can be further extended to account
for Surface Scattering phenomena (BSSDF).

These functions have a minimum of four dimensions
(input-output pair directions in polar coordinates) and usu-
ally three RGB values as output. It is thus technically possi-
ble to choose a discrete set of (ωi,ωo) orientations an create
a lookup table to interpolate the response of the material,
which is captured with multiple light and camera positions
(e.g.with a gonioreflectometer). It is evident that the storage
becomes a major drawback for tabulated data, which can
only be reduced through a significant reduction of quality.
Moreover, we are considering only homogeneous surface
materials, which is not often the case in actual scenes (e.g.,
a printed paper). Those spatially-varying values (svBRDF)
can be stored in a stack of textures; a Bidirectional Distribu-
tion Texture Function (BTF), increasing the dimensions and
size of the table.

Beyond direct compression techniques, the most suc-
cessful approach in graphics has been the use of analytic
N-dimensional functions to approximate the reflectance and
scattering distributions. The simplest of them, Lambertian
diffuse, and Phong specular shading are also well known in
the computer vision community. These functions leverage
symmetry (isotropy) to model the material with a few pa-
rameters. For instance, a Lambertian material only requires
to know the intrinsic albedo, a sort of base color, while the
Phong model requires three additional parameters for the
specular component (e.g., shininess). In the following sub-
sections, we will review the most common and simple ma-
terial assumptions used in recent papers, finalizing with the
most sophisticated inverse material models which are start-
ing to be studied in our field.

2.3.1 Lambertian Assumption

The Lambertian assumption is the most common material
reflectance simplification used to tackle the problem of in-
trinsic image decomposition. It consists on assuming that the
BRDF of a surface is constant in all directions (diffuse) and,
consequently, the observed light radiance does not depend
on the viewpoint. Therefore, we can omit ωo in the surface
reflectance model fr used in Equation 4. If the surface is dif-

fuse, then fr(ωi) =
ρd
2π

, with ρd denoting the diffuse albedo:
the constant ratio of incident light which is reflected in any
direction, independently of the view point ωo. The image
pixel value I is then given by:

I =
ρd

π︸︷︷︸
A

∫
Ω+

Li(ωi)(ωi ·N) dωi︸ ︷︷ ︸
S

(5)

The intrinsic model then can be defined as,

I = A ·S (6)

where S contains all the shading variations due to the geom-
etry of the local surface w.r.t. light direction. In some cases,
the shading image should contain contributions of all the
lights in the scene (S1 + S2 + ...+ SK), which for discrete
directional lights, can be deterministically estimated with a
linear summation:

S =
K

∑
1

Li(ωi)(ωi ·N) (7)

In the case of a more realistic illumination representation,
such as environment lighting, or indirect light, the shading
computation requires to sample the whole hemisphere Ω+,
often recursively sampling other surfaces to approximate the
integral of the incoming light. The shading component S
within Equation 5 in the integral form, is difficult to com-
pute and not so easily invertible and differentiable, so until
recently, most intrinsic decomposition methods assumed the
simpler formula described in Equations 6 and 7. Note that
the illumination visibility is not considered in most cases
(E.g.: cast shadows).

2.3.2 Non-Lambertian Assumption

There are two possible sources producing a Lambertian
shading, either a surface which has an extremely rough
micro-geometry, and thus reflects light equally in multiple
random directions at any differential patch of the surface,
or a very diffuse light source, coming from any direction
with equal intensity (e.g., a foggy day). Both scenarios can
be combined (Equation 4): the shiniest object in a foggy day
will look quite diffuse, while even the most diffuse materials
tend to project specular reflections under focused lighting
from certain view angles. However, the majority of materi-
als in the world are not Lambertian: even the most diffuse
surface will exhibit Fresnel reflections when observed at
grazing angles. Therefore, most surfaces will show the view-
dependent effects that are classified as specular reflections.
This separation between specular and Lambertian is rather
pragmatic, but arbitrary, as even a simple microfacet model
(shown in Figure 3) requires multiple analytic 3D lobes to
approximate the 3D reflectance response for an infinitesi-
mal incoming light ray (ωi). The term specular is usually
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applied to narrow lobes with high probability of scattering
radiance, producing high luminance values at pixels (high-
lights). This family of materials are of the general form:

L(ωo) =
∫

Ω+
fr(ωi,ωo)(ωi ·N)︸ ︷︷ ︸

fNL

Li(ωi) dωi (8)

fNL(ωi,ωo,N) = fd(ωi,N)+ fs(ωi,ωo,N) (9)

where fNL is a non-lambertian BRDF composed by two
components: fd , a diffuse isotropic lobe, and fs, a specular
lobe which depends on the camera viewpoint (ωo).

Dichromatic Reflection Model.This particular Non-
Lambertian model [88,130] separates the object in two
reflection components (Sd ,Ss), but considers that the specu-
lar component Ss might have a color αs which could differ
from the color of the reflected light:

L(ωo) = αd

∫
Ω+

fd(ωi,N)Li(ωi)dωi︸ ︷︷ ︸
Sd

(10)

+αs

∫
Ω+

fs(ωi,ωo,N)Li(ωi)dωi︸ ︷︷ ︸
Ss

(11)

I = αdSd +αsSs (12)

This is the case of metallic materials which, unlike dielec-
tric ones, will show specular reflections with a change in
wavelength. Some additional effects such as colored inter-
reflections might be also captured in all layers.

Phong and Blinn-Phong.The dichromatic model can be ex-
tended with one of the most adopted analytic approxi-
mations, either Phong ( f P

NL) or Blinn-Phong ( f P
NL), which

could be estimated with Monte Carlo integration and ar-
bitrary lighting, or analytically computed with directional
light sources:

f P
NL(ωi,ωo,N) = αd(ωi ·N)+αs(h ·N)k (13)

f BP
NL (ωi,ωo,N) = αs(ωi ·N)+αs(r ·v)k (14)

where αd and αs are the colors of the diffuse and the spec-
ular reflections, the halfway vector h = ωi+ωo

||ωi+ωo|| depends on
the light direction ωi and the view direction ωo. The size of
the specular lobe is determined by the scalar term k ∈ R.

2.3.3 Beyond Dichromatic Models: Physically-based
Materials

Naturally, the breath of materials which can be synthesized
with the previous models is very limited and not quite realis-
tic in most cases. The advent of physically-based materials
has introduced many variations [50] of the original micro-
facets models [131], which assume that a surface is com-
posed of many very tiny facets that reflect light perfectly.
By controlling the statistical distribution of their orienta-
tions, the roughness of the surface varies from mirror-like to
almost diffuse. Additional optical properties are introduced
in these models: Fresnel view-dependent reflectivity, multi-
ple specular lobes, metalness (conductive materials such as
gold, change the color of the highlights), multiple reflection
and refraction lobes, etc.

nL
Secondary Specular

(clear coat)

Specular
Reflection

Outgoing axis
(view)

Backwards Reflection
(Sheen)

Diffuse Transmitted
(multiple scatter)

Subsurface Scattering

Diffuse 
Reflection

Specular Transmitted 
(single scatter)

BRDF

BTDF

Incoming 
Light ωi

ωO

Fig. 3 2D depiction of a physically-principled BSDF theorical model.
In most standard representations, the continuous reflectance 4D func-
tion is discretized into a combination of analytic lobes (Cosine, GGX)
which can be easily computed and used for sampling purposes. Note
that subsurface scattering (photons traveling through the medium) is
not composed by multiple lobes. They are depicted for descriptive pur-
poses, but it is rather approximated by a constant value or a diffusion
profile, if not explicitly computed by simulating multiple scattering
events with path tracing or photon mapping.

The separation of the lobes described in the multi-lobed
physically-based model shown in Figure 3 is not arbitrary,
grouping reflections and refractions which share the same
orientation and energy level. For instance, the main diffuse
lobe is grouping multiple different orientations which are
not view-dependent and share the same intensity and color.
If it covers the full hemisphere with a cosine-like ratio, it is
often referred as Lambertian. Likewise, the specular trans-
mitted lobe is grouping a view-dependent peak that the ob-
server would only see when the translucent surface is be-
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tween the light source and the camera. Even if it is often
called a single scatter lobe, likely multiple internal scatter-
ing bounces of light are also included in this group.

2.4 Illumination

The illumination is a significant contributor to the shading
term (S) in most decompositions. From a rendering perspec-
tive, as shown in Equation 15, the computation of the pixel
radiance, L, requires to consider both the emitters Le and
the irradiance: the integral of all the incoming lighting at
the observed point. This incoming illumination is often ne-
glected, considering only point light or directional analytic
emitters, which simplify the shading computation by remov-
ing Li from the integral. If fr is also assumed to be Lamber-
tian, only the form factor given by the cosine of the surface
normal and the light direction remains.

L(x,ωo) =Le(x,ωo)

+
∫

Ω+
fr(x,ωi,ωo)Li(x,ωi)max(ωi ·N,0) dωi

(15)

In actual scenes, the incoming lighting is a combination
of emitted or reflected illumination from distant objects
(far field) and local surfaces close to the observed area
(near field). The former is usually approximated in com-
puter graphics with environment lighting, often based in
High-Dynamic-Range (HDR) images mapped into an infi-
nite sphere or cube surrounding the scene, while the latter
can be derived from the far field illumination, by simulating
the local secondary light bounces. If the geometry does not
change, an environment map can be stored at multiple scene
locations and distances, to include near field effects more
accurately (Spatially Varying Environment Maps), although
at a great memory cost, and only for static scenes.

To reduce the sampling and size of environment maps
and simplify the computation, Ramamoorthi and Hanrahan
[106] proposed their compression with Spherical Harmon-
ics (SH), a set of orthonormal basis functions defined on
the spherical domain (elevation θ and azimuth φ angles).
Thus the equation 16 describes the irradiance E as the sum
of bases weighted by the cosine decay term Al and the il-
lumination coefficient Ll,m. By changing the representation
of the bases Ŷ to polynomial coordinates of a unit normal
n = (x,y,z)T , this becomes an efficient vector dot product
operation (Equation 17). With the required modifications,
this strategy is feasible with other orthogonal basis functions

on the sphere.

E(θ ,φ) =∑
l,m

ÂlLl,mYl,m(θ ,φ) (16)

E =Ŷ T L (17)

E =T T L (18)

If we want to account for near field occlusion and interreflec-
tion, it is possible to precompute those local interactions,
because they depend on the object geometry and materials,
and not on far field illumination. This family of techniques is
known as precomputed radiance transfer (PRT) [120]: they
precompute multiple events of light transport (see Figure
2) into the T term in Equation 18 with Monte Carlo path-
tracing. In this fashion, each pixel will have secondary light
bounces stored in a light transport map. If only the visibility
term V (ωi) is considered for T , the method will be storing
the ambient occlusion shadows, but not colored interreflec-
tions.

Spherical Harmonic EncodingSample 1 Environment

Sample 1 (SH)Sample 2 (SH)

2 1

l=1

l=2

l=3

Fig. 4 Example of spatially varying illumination encoding with Spher-
ical Harmonics (SH). The incoming lighting can be computed glob-
ally for the whole scene (far field), or locally, at multiple points (near
field) as we show for the two samples near each colored wall. If we
project the irradiance (top row) into an SH basis we obtain a diffuse
low-frequency representation (examples in bottom row).

In Figure 4, we can see a pyramid of spherical har-
monics bases Yl,m with different coefficients. It is impor-
tant to know that, although usually nine bases are consid-
ered enough to account for 99% of the far-field irradiance
at diffuse surfaces, this percentage is significantly smaller in
glossy surfaces (requiring many more coefficients). More-
over, a small number of coefficients will never account for
high frequency effects, such as cast shadows from high-
frequency light sources (E.g: a point light representing the
sun), even producing ringing artifacts if we try to increase
the accuracy by adding more bases.

There are other popular basis in rendering such as Haar
Wavelets or Spherical Gaussians (SG) [133], which also
have very interesting properties. Most of the methods an-
alyzed in this survey use the spherical harmonics encoding
(more details in Section 3).
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3 Single Image Inverse Appearance Reconstruction

Given a single image, the general goal of inverse appearance
reconstruction is to obtain a set of parameters, that, for a
function (known or not), produce the same original image.

It can be argued that even a simple image auto-encoder
performs appearance reconstruction, just by learning projec-
tions (functions) to and from deep latent space variables (pa-
rameters). However, one of the most desirable properties for
those parameters in computer graphics is editability (e.g.,
change the color of a wall, dim the illumination, remove
a specular highlight), and such neural parameters would,
in most cases, lack any meaningful semantics or intuitive
control over specific components of the image formation.
This is a well-known limitation in the field of neural ren-
dering [126], where the generality and editability required
to create novel images with a neural network is very con-
strained because all the light, geometry, and material inter-
action events described in Section 2 are learned and embed-
ded in an implicit unknown function. These models are often
trained with specific parameter variations (e.g., face relight-
ing with environment illumination images, view synthesis
with multiple lightfield views) and thus, any novel output
image is limited to the parameter space sampling considered
in the original training set.

The traditional approach to decompose an image into ed-
itable components is to mimic the optical process of image
formation. However, as can be inferred from Equation 3, this
problem is generally ill-posed because the number of physi-
cal parameters to infer is substantially bigger than the num-
ber of known values in the system, resulting in several am-
biguities. For example, the color of a pixel might be caused
by the color of the light source or the color –reflectance– of
the material. Most of the previous work assumes gray-scale
lighting, while only a minority assume colored lighting ([15,
95,5]). Other ambiguities derive from the non-orthogonal
parameter space, with multiple combinations yielding the
same pixel value. This ambiguity, sometimes referred as the
scale ambiguity, has been addressed by previous work [95]
in the loss function, using a Scale Invariant L2 loss instead
of the regular L2 (further details in Section 7), or imposing
priors on the albedo layer by means of bilateral filtering or
L1 losses.

The complexity of the inverse reconstruction problem
will be thus determined by the rendering function used to
model the scene. As such, given a single RGB image as in-
put, the tendency has been to simplify the rendering model,
reducing it to the components with the most significant
contribution to the final appearance (e.g., choosing direct
over indirect illumination, diffuse Lambertian over complex
BSDF models, or surface-level geometry instead of micro-
geometry). This has ultimately lead to the intrinsic image
formation models as described in Section 3.1. Any optical

phenomena at the target image which is not reproducible by
those models are thus dismissed, and either accumulated as
errors in the wrong intrinsic parameter layer or stored as a
residual image, trading simplicity in the parameter estima-
tion for precision in the reconstruction. For example, the in-
trinsic diffuse model, with albedo and shading as the only
unknown parameters, is unable to capture effects like spec-
ular highlights or inter-reflections. Multiple nuanced errors
are accumulated by such a simple assumption: if applied to
the decomposition of a translucent object, it will generate
smoother normals than the actual surface, due to the natural
blurring of gradients produced by subsurface photon scat-
tering [31]. To capture those effects, along with the possibil-
ity to modify the geometry or lighting of the scene in post-
processing, a complex image formulation with lights, mate-
rials, normals, and scene depth as controllable parameters is
required.

3.1 Intrinsic Image Formation Models

From a practical standpoint, most of the methods that tackle
the problem of inverse appearance reconstruction for generic
scenes or objects can be classified into several categories,
according to the image formation model they assume (see
Figure 5). All the methods reviewed in this survey are clas-
sified according to these models in Table 2.

Intrinsic Diffuse, Id(I|A,S). The input image is parameter-
ized by the albedo (A) and the shading (S) images accord-
ing to Equation 6. This model assumes the materials of the
objects in the scene are purely Lambertian. The majority
of the methods shown in Table 2 chose this model due to
several reasons: reduced number of unknown parameters,
existing priors derived from classical approaches, existing
labeled datasets, and the assumption that the isotropic The
Lambertian model is a good approximation to the dominant
reflectance in everyday scenes [95,147,149,64,97,56,8,25,
37,78,79,86,12,74,139].

Intrinsic Residual, Ir(I|A,S,R). An image can be decom-
posed into an additive combination of the multiple bounces
of light. The first bounce of light is directly reflected from
the surface before reaching the camera sensor (direct illu-
mination), the subsequent bounces of light hit or penetrate
other surfaces a variable number of times producing global
illumination effects like color bleeding, subsurface scatter-
ing, or caustics (see Figure 1). In the literature of intrinsic
image decomposition there is a body of work focused on iso-
lating global illumination effects, generally simplified to dif-
fuse interreflections on lambertian surfaces. Early methods
altered the illumination of the scene in order to estimate the
light transport between pixels. For instance, Seitz et al. [113]
build upon shape-from-interreflection methods, computing
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Inverse Lighting

Lighting MaterialGeometry

Normals

Depth

Albedo

Spatially Varying
(SVBRDF)

Environment
(Far or Local)

Direct&Point
Parameters

Intrinsic Decomposition
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Model Parameters: 
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Geometry
Flat surface
Segmented object
Similar geometry
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• Human Body
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Distant (far field)
• Environment (SH)
Local (near field)
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• Ambient Occlusion
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Fig. 5 Taxonomy of single image inverse appearance reconstruction methods: intrinsic decomposition and inverse rendering. The intrinsic diffuse
model assumes Lambertian materials and jointly couples light and geometry interaction through a shading image. The intrinsic residual captures
a residual image of the sum of the other non-diffuse effects. In between, several methods in the literature have used the dichromatic reflection
model, where only a colored specular reflection is taken into account. Inverse rendering methods aim at recovering the full parameterized scene
(camera, lighting, geometry, and material) to synthesize novel views or to enable predictably edits. To simplify the problem, many methods impose
priors over the scene elements, e.g.: distant lighting through spherical harmonics illumination, or known proxy geometries (faces, human bodies,
flat surfaces, etc.). Note that the boundary between intrinsic decomposition and inverse rendering is really fuzzy, as recent intrinsic methods are
aided by implicit modeling of some scene elements (lighting through environment maps, or geometry through normals). A key difference between
both approaches is that pure inverse rendering methods have the goal of modifying all the scene parameters, while intrinsic decomposition targets
a more physically correct estimation of the albedo layer.

the forward propagation of light (N bounces) and finding
the cancellation operator which removes the effects of each
interreflection, from a set of images in which an individual
scene point is illuminated by a narrow beam of light. Sim-
ilarly, Bo et al. [30] used a projector to illuminate areas of
the scene and capture the multiple interactions of radiance
from the target area with other surfaces, requiring a number
of captures linearly dependent on the amount of recursive
light bounces being estimated. The smooth nature of inter-
reflections and user-based constraints are leveraged by Car-
roll et al. [19] with compelling results, albeit quite sensitive
to the correct placement of the strokes that guide their itera-
tive weighted least-squares optimization process. If we con-
sider video sequences, initial clustering can be propagated to
additional frames leveraging temporal information, in such
fashion, Ye et al. [138] used a Bayesian Maximum a Poste-
riori formulation. Similarly, Meka et al. [91] relied on iter-
ative reweighted least squares to achieve real time decom-
position. However, only direct illumination is assumed, as-
signing interreflections to shading variations. Finally, many
methods rely on multiple views of the same scene, with
different viewpoints or varying illumination conditions. In
this line, Duchene et al. [35] obtained separated illumina-

tion layers from outdoor photographs accounting for sec-
ondary light bounces from close surfaces, sun illumination
with cast shadows, and indirect light from the sky, by prop-
agating values in image space supported by an approximate
3D reconstruction from multiple camera views of the same
scene. All these methods require information of the same
scene from multiple sources, whether it is additional illu-
mination, a novel point of view, or pixel annotation by user
intervention. For instance, in the case of mirror-like reflec-
tions, the traditional approaches have estimated the shape
of the reflective surface either by introducing coded lighting
with projectors [4], or capturing from multiple viewpoints,
as shown by Godard et al. [44], even accounting for self-
interreflections. It is only recently, with the development of
differentiable rendering algorithms capable of physically-
based inverse global illumination, such as Mitsuba [100],
that interreflections have started to become tractable in sin-
gle image decomposition.

In addition to albedo and shading parameters, the intrin-
sic residual model, as defined by Equation 12, introduces
an extra term (R) to account for all the remaining optical
effects, both due to multiple interactions of light e.g., am-
bient occlusion, color bleeding from inter-reflections, caus-
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tics, and to account for additional material reflectance com-
ponents e.g., specular reflections, translucency, scattering
effects, etc.[117,90,114,146,77]. While none of the deep
learning-based methods use it, the dichromatic reflection
model (Section 2.3.2) was also used to account for metallic
objects and colored speculars in traditional approaches [130,
88,9].

Inverse Lighting, Il(S|N,L,D). A more expressive set of
methods further parameterize the shading as the result of
the interaction between the normal map (N), the illumina-
tion (L), or a depth map (D). This implies an extra level
of complexity, as the amount of unknowns in the system
increases. Some methods assume distant lighting (far-field)
and thus use an approximate reconstruction of the environ-
ment map (E) [114], while others use spherical harmonics
(SH) with a fixed number of coefficients [139] or assume di-
rectional lighting (dirL) [56] parameterized by its 3D posi-
tion and intensity. Unlike other methods, which evaluate the
render equation during training, Janner et al. [56] also learn
the render shader within the deep network architecture, akin
to neural rendering. Most of these methods reconstruct the
surface normal N, as it is a required component to compute
the shading. Few approaches have started to consider near-
field illumination effects, such as ambient occlusion [61] or
local incoming illumination [146,77], as per-pixel environ-
ment maps encoded with Spherical Harmonics or Spherical
Gaussians (svSH, svSG).

Most approaches combine multiple formation models,
often with coupled estimation of geometry and light sources.
For instance, Sengupta et al. [114] train one network to
predict an intermediate representation of normals, environ-
ment maps, and albedo map, using a closed-form Lamber-
tian shader for far-field lighting. This method also relies
on the intrinsic residual model: in a second self-supervised
step, they train a residual network that takes as input both
the normals and environment map along with the predicted
albedo, and estimates the remaining residual illumination ef-
fects which were not captured by the first pass (e.g. inter-
reflections, cast shadows, near-field illumination).

Inverse Material. Beyond the Lambertian material model,
there are a few methods which introduce more complex ma-
terials. Meka et al. [90] use Blinn-Phong (Section 2.3.2)
and regress the shininess coefficient (s-BP). Sengupta et
al. [114] train the network with a dataset that contains glossy
objects rendered using Phong. In this case, the use of non-
Lambertian materials only serves to reinforce the estimation
of the intrinsic residual term, as the network is not designed
to explicitly estimate Phong material parameters. The more
complete method so far is the work of Li et al. [77], which
assume a physically-based microfacet material model [62,

50] and predicts the albedo and roughness (rSV BRDF ) pa-
rameters, besides illumination, depth, and normals. Also re-
lated to this problem are the methods that estimate a coupled
representation of material and illumination using reflectance
maps [52,108].

3.2 Semantic Priors

Some works have focused on specific scenarios to enforce
semantic priors and, therefore, simplify the challenging
problem of inverse appearance reconstruction. This simpli-
fication allows to leverage known parametric models to rep-
resent surfaces, deformation, and appearances, which sig-
nificantly reduce the complexity of the problem. Notice that
such scenario-specific methods are built on top of the image
formation models described in Section 3.1. In this section
we discuss several domains where learning-based methods
have been proposed (e.g., flat materials and single objects,
faces, and humans). We explicitly link each of the meth-
ods discussed below with its corresponding underlying im-
age formation model from Section 3.1, and provide insights
about the benefits of using semantic priors.

3.2.1 Flat Materials and Single Objects

Estimating complex material parameters can be done much
more easily by targeting single planar materials [32,76,81,
132] or isolated objects [82]. Our survey is mainly focused
on arbitrary scenes for which it is not possible to make such
geometric assumptions. Nevertheless, for consistency with
the literature, we overview the methods which evaluate their
performance on the MIT Intrinsic dataset [45], or use such
dataset for training (Section 4.1). There are two exceptions:
the work of Meka et al. [90], which we review to connect the
diffuse intrinsic decomposition model with more complex
svBRDF material models; and the work of Janner et al. [56]
as serves to link the problem with neural rendering methods.

Several existing methods estimate a microfacet svBRDF
model from one or several images of the material captured
with a mobile device. Deschaintre et al. [27,28,29] present
a framework based on deep neural networks (UNets) trained
using self-supervision and render losses. Gao et al. [39]
uses a similar framework augmenting the training data us-
ing rendered views of the material. Recently, Guo et al. [47]
demonstrate that GANs, StyleGAN2 [63]) in particular, can
be powerful frameworks for estimating the reflectance prop-
erties enabling material editions using a learned latent space.

3.2.2 Faces

Many methods leverage the seminal work of Blanz and Vet-
ter [13] on modeling 3D faces with a low-dimensional 3D
morphable model (3DMM) to incorporate geometry priors
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to solve the intrinsic decomposition problem. Importantly,
assuming a tight cropped image of the face, most of exist-
ing works in the area of intrinsic faces are able to train their
model directly from unlabeled images in-the-wild by com-
puting the pixel-wise difference of input and predicted im-
age.

In the context of the different simplifications of the im-
age formation model described at Section 3, initial meth-
ods on faces focus on the intrinsic diffuse simplification
(i.e., estimate albedo A and shading S) [118,128], while
more sophisticated approaches predict the components of
the intrinsic residual model (e.g., also predict specular or
noise) [137]. In order to estimate the shading layer, most
methods also formulate an inverse lighting problem and es-
timate normals and lighting [128].

Shu et al. [118] learn a subspace capable of represent-
ing face image with explicit disentanglement of normal,
shading, and albedo components. This enables seamless ed-
its to face images, including manipulation of expression,
and adding glasses or beard. Even if it is a self-supervised
method, Shu et al. require intermediate constraints to pre-
vent the network to converge to naive solutions such as
shading to be constant and albedo capturing all the appear-
ance. To this end, they introduce a weak supervision strat-
egy based on enforcing the estimated normals to be closed
to those extracted from a 3DMM. Tewari et al. [128] also
use 3DMM to reconstruct faces from monocular images by
a model fitting approach. They propose a carefully designed
subspace with a latent parameters that match to a seman-
tic encoding of facial expression, shape, illumination and
albedo. Illumination is modeled using Spherical Harmon-
ics [94] with nine coefficients which tends to produce over-
smooth results.

SfSNet [115] proposes an architecture to learn to sepa-
rate albedo and normal layers. Their key observation is that
in previous networks [117] all high-frequency details are
passed through the skip-connections. Therefore, the latent
representation is unable to figure out whether fine details
such as wrinkles or beards are due to shading or albedo.
Consequently, they propose a new architecture that learns
to separate both low and high frequency details into normal
and albedo to obtain a meaningful subspace. This is used
along with the original image to predict lighting represented
with spherical harmonics. This model reconstructs more de-
tailed shape and reflectance than MoFA [128] because it is
not limited by the 3DMM prior. Similarly, in their subse-
quent work, Tewari et al. [127] also propose a method that
is not bounded by the underlying 3DMM prior. They pro-
pose and end-to-end trainable system that uses 3DMM just
as a regularizer and learns corrective space for out-of-space
generalization. Despite using the same illumination model
as [128], the corrective spaces enables the estimation of ge-
ometry, reflectance and lighting of higher quality, but it still

assumes a Lambertian reflectance. Follow-up research [125]
further improve upon the use of priors and learn from scratch
an appearance and geometry model to estimate the surface,
albedo, and illumination of unconstrained images with un-
precedented level of detail. Key to their success is a new
graph-based multi-level face representation. They use both
a coarse shape deformation graph and a high-resolution sur-
face mesh, where each vertex has a color value that encodes
the facial appearance. Despite the impressive results of these
works, they are all based on the assumption of a distant and
smooth illumination and purely Lambertian surface proper-
ties, which prevents the modeling of any residual component
(e.g., specular effect), which is a fundamental part intrinsic
imaging.

Yamaguchi et al. [137] go one step forward and focus on
learning to infer high-resolution facial reflectance, including
albedo and specular layers, and fine-scale geometry from an
unconstrained image. In contrast to other approaches [118,
128,115,127], their model goes beyond the Lambertian as-
sumption, and accounts for non-trivial lighting effects such
as ambient occlusion and subsurface scattering. To this end,
they use two identical architectures to extract specular and
albedo textures, arguing that these components capture dif-
ferent optical features of the skin and therefore a single net-
work easily fails in modeling conflicting features. Addition-
ally, they incorporate an image completion step that gener-
ates complete texture maps.

A different approach to learn an intrinsic residual image
formation model for faces is to circumvent the use of explicit
image parameters (e.g., S, A, or N) altogether, and attempt to
learn a specific input-output model for a particular task. This
allows the learned model to account for non-Lambertian re-
flectance or go beyond Spherical Harmonics (SH) illumina-
tion. Sun et al. [122] train a network that takes as a input
a single image of a faces and a target illumination, and di-
rectly predict the relit image. Similarly, Zhou et al. [145]
propose a deep architecture to relight single images condi-
tioned to a target lighting expressed in SH. Meka et al. [89]
also propose a deep learning-based approach to learn a map-
ping between spherical gradient images and the one-light-at-
a-time (OLAT) image from a particular direction. Even if no
explicit reflectance model is imposed, the residual compo-
nent is captured with a task-specific perceptual loss trained
to pick up specularities and high frequency details. Nest-
meyer et al. [98] propose a hybrid approach where the dif-
fuse component is represented with an explicit model, and
the residual is unconstrained and modeled with a neural net-
work. This allows for effects that are not predictable by the
BRDF, such as subsurface scattering and indirect light.
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3.2.3 Full Human Body

Most of the above-discussed methods for intrinsic decompo-
sition of faces share a common limitation: they ignore light
occlusion. While this is an acceptable assumption for non-
articulated and rather convex surfaces such as faces, full hu-
man bodies often present self-shadows and self-occlusions
which requires more complex illumination models. This is
specially evident in exceptions such as the work of Nest-
meyer et al. [98] which consider a binary mask encoding the
visibility from a point light source. The shadows cast by the
nose or the head on the neck increase the realism of the re-
lighting results. Few method exist that tackle such challenge
with a learning-based strategy. Kanamori et al. [61] pro-
pose a method that is able to learn and encode light occlu-
sion from masked full body images. Despite being a deep-
learning based approach, their loss functions explicitly min-
imize the intrinsic components of the images (e.g., albedo,
light, and transport map).

4 Datasets

One of the critical pieces of any learning-based approach is
the data available for training. A dataset of sufficient vari-
ety, significance, and size is required regardless of the for-
mulation of the learning problem, e.g., supervised, semi-
supervised or unsupervised. The complexity of the intrinsic
decomposition problem makes creating labeled datasets of
all the individual components a highly challenging task, as
this type of data cannot be freely obtained from the natural
world, neither is easy to gather from human annotations.

The very first dataset with explicit labels for reflectance
and shading was created in a laboratory setup where a few
small painted figurines were coated with neutral gray to cre-
ate shading images [45]. For a long time, it was the only
ground truth dataset available for quantitative evaluations,
and not until recently, the boost in performance and quality
of physically-based rendering engines along with the flour-
ishing of 3D datasets has facilitated the creation of larger,
more complex, and heterogeneous data for training. The lack
of labeled data motivated the use of alternative learning-
based solutions. In this regard, the main approach has been
to leverage semantic knowledge of the scene content and
learn from relative measurements instead of regressing abso-
lute radiance values. Relative measurements of the scene ap-
pearance can be found relatively easily, for example, humans
are quite skilled at judging whether two surfaces are made
of the same material despite illumination variations [10].
This property (the Albedo Invariance), which is key to dis-
ambiguate the contribution of the intrinsic components, can
also be exploited given existing and freely available datasets
such as time-lapse sequences.

In this section, we review the most common datasets
which are being used for training and evaluation purposes.
The core datasets discussed here correspond to those explic-
itly published and made available to the public. Neverthe-
less, many methods build on these datasets to create their
own without publishing it. In the following, the description
of each dataset includes the methods that use them along
with existing derivations. We organize the datasets accord-
ing to the following properties:

– Size (# 3D Models, # Sequences, # Imgs): Total num-
ber of images (Imgs), sequences of the same scene with
varying illumination or viewpoint (Sequences), or num-
ber of 3D renderable scenes. Note that ShapeNet [21]
and SUNCG [121] are datasets of renderable ob-
jects/scenes so the amount of images generated to train
the models depend on the particular method.

– Scene Content: Images included in the dataset might
be of individual objects (obj) or complex scenes. In the
latter case, some datasets might contain indoor scenes
(ind), outdoor scenes (outd), or a combination (any).

– Scene Syn/Real: The image can be synthetic or real. In
the former case, some of the datasets use physically-
based rendering engines, while other have been gener-
ated with non-photorealistic ones.

– Source: The constraints used for training might be auto-
matically generated from the data (auto), or come from
human annotations.

– Labeling: Some datasets provide sparse annotations of
just a few pixels of the images, while others provide
dense per-pixel annotations.

– Constraints: the data can be labeled with explicit (or
absolute) values for each of the unknown parameters, or
can be used as a way to extract relative relationships for
the intrinsic components within a single image, or across
several images of the same scene. If the latter, the dataset
might be additionally organized in sequences.

The reminder of this section is organized according to
the scene content, namely objects or general scenes. The
other properties will be mentioned within the description of
each dataset. Please refer to Table 1 for a comprehensive
summary of datasets and their properties, and Figure 6 for a
selection of representative images.

4.1 Objects

As a way to constrain the problem, some methods have lim-
ited the domain to isolated objects. This enables the use of
additional priors about the underlying geometry and shape
reducing the number of possible solutions and enabling
more complex materials, and illumination models. Such is
the case for methods targeted at flat surfaces, faces or hu-
mans. Although we briefly review them in Section 3.2, in
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Fig. 6 Representative images for the most relevant and publicly available datasets

Table 1 Summary of datasets used in the literature of deep learning-based intrinsic decompositions which are avaible to the public. 1 The render
engine used to generated the images of this dataset is a non-photorealistic one. More details about the definition of each category in the accompa-
nying text.

Dataset # 3D Models # Seqs # Imgs Max Image
Size (approx) Scene Syn/Real Source Labeling Constraints

ShapeNet [21] 4000 * * * obj syn auto dense abs/rel
MIT Intrinsics [45] - 10 220 600 obj real auto dense abs/rel
SUNCG [121] 40k * * * ind syn auto dense abs
MPI Sintel [18] - - 890 1024×436 any syn2 auto dense abs
CGIntrinsics [78] - - 20k 640×480 ind syn auto dense abs
IIW [10] - - 5230 512 ind real human sparse rel
SAW [64] - - 6677 512 ind real human sparse rel
BigTime [79] - 155 6500 1080 any real auto dense rel
MegaDepth [80] * 200 150k 1080 outd real auto dense rel

this survey we focus on the methods that deal with arbi-
trary object shapes or provide quantitative errors on com-
mon metrics. Another advantage of dealing with objects in-
stead of generic scenes is that it becomes less complex to
capture/render variations (or sequences) of images of the ob-
ject as seen under different perspectives or viewpoints. Such
is the case for the two datasets reviewed below.

MIT Intrinsic [45]. Contains real images of 20 objects with
ground truth albedo and shading captured under 11 differ-
ent directional light sources, resulting in 220 images (20 se-
quences). Shading images were obtained by painting the ob-
ject with gray spray. The objects were photographed within
a controlled setup which minimized indirect illumination
and allowed easy alignment between different shots. Even
though it is a small dataset, the majority of methods have
used it for training or fine-tuning their models. There are
two divisions of this dataset that people have consistently
used to compare performance: the Barron split [5], which

divides each sequence by image, and the Direct Intrinsics
split [95], which divides the sequences by objects.

ShapeNet [21]. The ShapeNet dataset is a richly annotated
dataset of 3D objects with albedo maps of over 4000 ob-
ject categories. Different methods have rendered the avail-
able 3D models into datasets of different sizes, objects vari-
ety, and illuminations. They all leverage a physically-based
rendering engine (e.g. Mitsuba[55] or Blender Cycles) as
well as provide dense labels. Additionally, the ShapeNet
3D dataset has been used to generate sequences of images
of the same object under different illumination conditions,
providing relative constraints for the learning formulation.
Meka et al. [90] render 100k images of 55 objects using
Blinn-Phong materials, and 45 indoor environment maps.
Shi et al. [117] render more than 2M images of 30k objects,
using Phong materials, and 98 environment maps. They per-
form category-specific training using four objects (car, chair,
airplane, and sofa), and evaluate cross-category generaliza-
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(a) Sparse labels
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Fig. 7 Difference between sparse and dense annotations. (a) Sparse
labeling provided by human annotators. On the left, in Green: re-
gions of near-constant shading but with possibly varying reflectance. In
Red: edges due to discontinuities in shape (surface normal or depth).
In Cyan: edges due to discontinuities in illumination (cast shadows).
Original images by herry and uggboy @ Flicker. (b) Dense per pixel
labels provided by a synthetic dataset [114].

tion. Janner et al. [56] also study cross-category general-
ization, and use Blender Cycles to render Lambertian ma-
terials on demand in the unsupervised setup. Baslamisli et
al. [8] render 20k images of different 3D models assigning
random colors to the albedo materials to introduce more va-
riety. Ma et al. [86] further leverage this dataset to generate
multi-illuminant training sequences by randomly picking 10
different light positions per each of the 10 selected object
categories (each one containing 100 objects). The amount
of training samples obtained thanks to ShapeNet is huge,
however, none of the methods published the splits so they
are not available for comparing performance across differ-
ent methods.

4.2 Scenes

Dealing with arbitrary types of scenes is the ultimate goal
of intrinsic decomposition methods. However, the appear-
ance of a material under different types of illumination can
change dramatically (e.g. clear-sky vs cloudy day, or natu-
ral vs artificial lighting). Most of the existing datasets in this
category, in particular, the ones that are synthetically gen-
erated, describe indoor scenes. In contrast to the ShapeNet
dataset presented in the previous section, generating on-

the-fly samples for arbitrary scenes is much more expen-
sive, consequently, existing synthetic datasets in this cat-
egory are static and provide absolute learning constraints
(MPI Sintel, SUNCG, CGIntrinsics). Relative comparisons
have been gathered from crowd-sourcing experiments (IIW,
SAW) or from the physics of the image formation (BigTime,
MegaDepth).
MPI Sintel. This synthetic dataset [18] of animation scenes
was originally designed for optical flow evaluation, how-
ever, thanks to providing the albedo layer, it proved use-
ful for the evaluation of intrinsic decomposition meth-
ods. As the original renders contained complex lighting ef-
fects (specular highlights, inter-reflections, etc.), it was re-
synthesized to appear purely lambertian and coherent [23,
95]. It contains a total of 890 images from 18 scenes with
around 50 frames each. Like MIT Intrinsic, there are two
known splits: the scene split, placing the whole scene (all
frames) either completely in training or completely in test-
ing; and the image split, where the same scene will ap-
pear both in train and test, placing different frames in each
split. Methods have consistently used the same splits of this
dataset for training and evaluating their methods.
SUNCG. The SUNCG dataset [121] contains 40k manually
created indoor environments with dense volumetric seman-
tic annotations. Likewise ShapeNet, the 3D models of this
dataset have served as a baseline to several methods which
have rendered the scenes under different illumination condi-
tions and materials. Zhou et al. [146] have used it to render
58949 images of Lambertian surfaces using Mitsuba [55]
for which they also have the albedo, normal map, depth, and
shading generated by setting all the materials to diffuse and
reflectance to 1. Sengupta et al. [114] also departs from the
SUNCG dataset, enriching the existing material models us-
ing Phong [70]. It contains 230k images of indoor scenes
physically-based rendered under multiple outdoor environ-
ment maps. It further provides the same scene rendered un-
der both diffuse and specular settings, as well as labels about
normal maps, depth, Phong model parameters, semantic and
glossiness segmentation. In order to reduce ray-tracing tim-
ings, the method has used deep denoising [20].
CGIntrinsics [78]. Taking 3D models and textures of indoor
scenes from the SUNCG dataset [121], this dataset contains
20k images (and albedo maps) of physically-based render-
ings using path tracing with global illumination. The dataset
also provides: the set of 50 synthetic scenes provided by
Bonneel et al. [14], code to compute the shading image from
the render and the albedo, the segmentation of each image
into superpixels [2], the training split, and the precomputed
bilateral embedding used in the paper to guarantee shading
smoothness.
Intrinsic Images in the Wild (IIW). IIW dataset [10] is
a sparse large-scale set of relative reflectance judgments
of indoor scenes collected via crowdsourcing, containing
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over 900k comparisons across 5000 photos. Along with the
dataset, the authors provide a metric for evaluating the al-
gorithms performance, the Weighted Human Disagreement
Rate (WHDR), which measures the percent of human judg-
ments that the method predicts incorrectly, weighted by the
confidence of each judgment. Although it has the limitation
of the sparsity of the annotations, this dataset is being used
consistently for comparing performance.
Shading Annotations in the Wild (SAW). Following the
methodology of IIW, SAW dataset [64] contains 15k sparse
annotations of shading gradients over 6000 images of indoor
environments: smooth shading, normal/depth discontinuity,
and shadow boundary. Using Precision-Recall metrics, this
dataset can also be used across methods to compare perfor-
mance.
BigTime [79]. Large dataset of real image sequences of both
indoor and outdoor scenes under varying illumination. Sky,
and dynamic objects such as pets, people, and cars were
masked out. It contains a total of 145 sequences from in-
door scenes and 50 from outdoor scenes, yielding a total of
over 6500 images.
MegaDepth [80]. Contains 150k images of 200 different
landmarks which have been reconstructed using state-of-
the-art Shape-from-Motion and Multi-View-Stereo meth-
ods. Each image is accompanied by its depth map and cam-
era parameters, so that it is possible to reconstruct the scene
from a vast range of view points.

5 Learning Formulation

The problem of inferring the intrinsic components of a
scene given a single image has been traditionally (i.e., be-
fore deep learning algorithms flourished) addressed with
optimization-based methods that make assumptions about
the contents of the scene or the physics of the imaging
process. For example, some methods assume clear-sky il-
lumination [102,38,5], monochromatic lighting [15,5,22],
piecewise smooth reflectance [10,11,112], or force areas
with similar texture or chromaticity to have the same re-
flectance [40,143]. These assumptions, formulated as statis-
tical priors, were combined within optimization frameworks
such as Conditional Random Fields (CRFs) [66,10], multi-
scale gradient-based solvers [5], or closed-form systems of
equations [143]. However, as in many computer vision prob-
lems, finding the optimal solution is computationally very
complex, and the use of ad-hoc priors and heuristic param-
eters narrows the scope and the generalization capabilities
of the solution. For example, the common assumption that
an edge might be produced by either a change of reflectance
or a change in shading [51,124,45], overlooks the fact that
both changes might occur simultaneously as it happens at
occlusion boundaries [40].

In recent years, Convolutional Neural Networks (CNNs)
[72,73] have become the state-of-the-art models for solving
many different computer vision tasks, such as object seg-
mentation, image classification or image-to-image transla-
tion [140,119,54]. A key factor to their success is the fact
that they internally learn hierarchical patterns that represent
image features at multiple scales, in a way that loosely mim-
ics the behavior of the visual cortex in mammals. Addition-
ally, the recent boost in the size and variety of datasets, as
well as the expansion of available computing power, have
made those models ubiquitous in computer vision problems.
Consequently, in the intrinsic image decomposition litera-
ture, CNNs have gradually substituted or complemented tra-
ditional hand-crafted priors and assumptions, to features that
are directly learned from data. We refer to the problem of
learning an intrinsic image decomposition from images us-
ing CNNs as Deep Intrinsic Images. There are several ways
in which the solution to this problem can be approximated
by CNNs.

In this section, we describe the methods according to the
formulation of the learning problem, or similarly, in the way
data and prior knowledge can be leveraged to train a model
capable of providing a solution. Despite the variety of exist-
ing inverse image formation models described in Section 2,
all the methods share similar learning strategies, which are
frequently compatible and combined in the objective func-
tion to provide the best performance. We have identified four
main complimentary strategies which have been used in the
literature so far:

– Weak-Supervision: use human judgments about the per-
ception of materials and illumination in images (Sec-
tion 5.1).

– Full-Supervision: leverage labeled datasets in full re-
gression frameworks in order to learn statistical priors
over the parameters domain (Section 5.2).

– Self-Supervision: include an image formation loss in or-
der to guarantee that the target parameters will effec-
tively reconstruct the original input image (Section 5.3).

– Priors: explicitly model prior knowledge about the
nature of each individual intrinsic component (Sec-
tion 5.4).

Figure 8 shows an overview of these strategies and how
they relate to the existing datasets. Although the majority
of the datasets serve a single purpose, some of them can
be used to feed in more than one learning strategy, partic-
ularly the ShapeNet dataset [21] as it enables the genera-
tion of samples on-the-fly during training. Table 2 shows the
methods covered in this survey according to the previous
categorization. Note that only a few methods follow a single
strategy, while the majority of them combine three or four,
thus, most of them will be discussed in more than one sec-
tion.



16 E. Garces & C. Rodriguez-Pardo & D. Casas & J. Lopez-Moreno

Data-driven Constraints

Learning Strategies

Full-Supervision
(Section 5.2)

Priors Albedo/Shading
(Section 5.4)

DataHeuristics

Flat 
Albedo

Sparse
Albedo

Smooth
Shading

Original Domain Gradient Domain

CG-PBR
MIT

Absolute Constraints Relative Constraints
(Physically-based)

BigTime MegadepthShapeNet

Self-Supervision: Image Formation
(Section 5.3)

Single Image 
Consistency

Multiple Image 
Consistency

Weak-Supervision: Relative Comp. 
(Section 5.1)

MIT ShapeNet

Fixed Viewpoint
Variable Light

Variable Viewpoint
Fixed Light

Variable Viewpoint
Variable Light

AlbedoShadingAlbedo

IIW SAW

Relative Predictions / WHDRloss

Relative Constraints
(Humans Ratings)

Similar Albedo Shading
Labels

MPI Sintel
CGIntrinsics

Real Synthetic

Fig. 8 Learning strategies and relationship with data-driven constraints.

Table 2 Summary of methods presented in this survey. The explanation of the models is presented in Section 3.1. A full description of the learning
strategy and neural architectures is presented in Sections 5 and 6.

Method Model Learning Strategy Network
ArchitectureWeak-S Full-S Self-S Priors

Diffu
se

Id Resi
dual

Ir Lightin
g

L Mate
ria

l

RP WHDR loss

O ∇ SIC MIC Af Asp Ssm Data C I2IT

Narihira et al. [96] - - - - S P-W
Narihira et al. [95] 3 AS A B
Zhou et al. [147] 3 A P-W
Zoran et al. [149] 3 A P-W
Kovacs et al. [64] 3 S B
Nestmeyer et al. [97] 3 A 3 B
Shi et al. [117] 3 Ir AS A E-D
Janner et al. [56] 3 dirL ANL 3 E-D
Meka et al. [90] 3 E BP Id R s-BP 3 E-D
Baslamisli et al. [8] 3 AS AS 3 E-D
Cheng et al. [25] 3 AS 3 3 3 3 Res
Fan et al. [37] 3 A AS ASP∇A 3 Res
Li et al. [79] 3 3 3 3 3 E-D
Yu et al. [139] 3 SH AN 3 3 3 E-D
Li et al. [78] 3 AS AS AS 3 3 3 E-D
Ma et al. [86] 3 AS P∇A 3 3 E-D
Bi et al. [12] 3 AS 3 3 3 E-D
Lettry et al. [74] 3 AS AS 3 Res
Sengupta et al. [114] 3 E Phong A ANL 3 E-D
Zhou et al. [146] 3 svSH AS ASNL ASN 3 E-D
Liu et al. [84] 3 3 3 3 Res

Li et al. [77] 3 3 svSG svBRDF A ANDL
rsvBRDF

3 3 E-D

5.1 Weak-Supervision: Learn from Relative Human
Judgments

As opposed to computers that only understand absolute
color values, humans are very skilled in judging whether two
surfaces are made of the same material despite variations
in illumination [71]. This ability, known as color constancy,
has been exploited in two recent datasets, the IIW [10] and
the SAW [64] datasets, that contain human judgments about
regions of images sharing similar albedo, or with assigned
shading labels (smooth shading, normal/depth discontinu-
ity, and shadow boundary), respectively. These judgments

are provided as sparse sets of pairwise comparisons and ac-
companied by a confidence score, the Weighted Human Dis-
agreement Rate (WHDR) [96], that takes into account dis-
agreements between the raters. Several methods have used
these relative constraints to train, fine-tune or evaluate their
models. Below we detail the two main strategies to leverage
such weak supervision to train deep networks.

5.1.1 Relative Predictions [RP]

Early approaches use this kind of data to train models that
predict relative scores between two image regions. Then,
they combine the output of these sparse predictions within
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existing inference frameworks to provide smooth estima-
tions. Narihira et al. [96] (trained on IIW) predict local light-
ness relationships by means of a CNN used as feature de-
scriptor combined with ridge ranking regression. They pro-
vide relative predictions, but unlike other methods, do not
attempt to reconstruct the intrinsic components. Using the
SAW dataset, Kovacs et al. [64] predict the source of a shad-
ing gradient –smooth shading, normal/depth discontinuity,
and shadow boundary– using a CNN along with a linear
classifier. Then, they use the local prediction within a classi-
cal Retinex formulation [143] to estimate the intrinsic com-
ponents. Zhou et al. [147] builds on a dense CRF frame-
work [66,10] initialized by the output of a siamese network
used as binary classifier which behaves as a prior for re-
flectance. Concurrently, Zoran et al. [149] propose a frame-
work to reason about ordinal relationships between local
patches of the images; besides depth estimation, they prove
to be successful on the IIW dataset for intrinsic decomposi-
tion. In this case, they use quadratic programming to propa-
gate and smooth the estimations using superpixels [2].

5.1.2 Relative Comparisons as Weak Supervision
[WHDRloss]

The second group of methods that use data from relative hu-
man judgments leverages such weak annotations for an extra
supervision in the learning loss to constrain the reflectance,
the shading, or both, depending on the dataset used. Instead
of combining the prediction with external frameworks, these
methods estimate the intrinsic components using only the
predictions of their neural networks. To this end, they use
the (WHDR) which, as mentioned, is a distance metric de-
veloped to evaluate the quality of the automatic estimations
with respect to the human ratings. Nestmeyer et al. [97]
proposed the only method to use this loss without further
supervision to provide dense estimations within an end-to-
end deep framework. They were followed by other methods
[37,114,78,146], which included this strategy as a form of
weak-supervision to fine-tune the models trained with other
sources of data.

5.2 Full-Supervision: Learn from Labeled Data

The use of labeled datasets for training machine learning
models is a common training strategy, often necessary for
obtaining successful models. The majority of methods men-
tioned in this section use absolute label values in regres-
sion losses. That is, for each labeled image, the error func-
tion is penalized if the estimated intrinsic components do
not conform with the ground truth labeled ones. Only using
this kind of supervision [95,117], however, is not a guar-
antee that the estimated components will faithfully recon-
struct the input image. Consequently, the majority of meth-

ods combine full regression with other forms of supervision,
as shown in Table 2. An alternative way of using labeled data
without explicitly connecting the labels in the loss function
by means of regression is proposed by Liu et al. [84]. In
such solution, large sets of images of each unknown intrinsic
component were used to train individual latent spaces rep-
resentations of each domain. We discuss such case in Sec-
tion 5.4.

Jointly training with real and synthetically generated
data is becoming a popular and successful trend (see Ta-
ble 3). Synthetic data may be useful to teach the model the
global shapes and common geometries, while real data is
necessary to fill the domain gap necessary for the methods
to work well with images taken under real-world illumina-
tions and materials.

As common with any image processing algorithms, the
regression of the intrinsic components can be done in the
original domain of the image pixels or in the gradient do-
main. This may help the neural networks learn a better rep-
resentation of the problem, but also hinder their learning ca-
pabilities by restricting the space of solutions they can find.
We have classified the methods in this section according to
whether the regression problem is formulated in the origi-
nal domain of the intrinsic parameters, or whether they are
transformed to the gradient domain before applying `1, `2,
or perceptual regression losses. Note that other transforma-
tions applied to the intrinsic components before performing
regression are also possible, for example, applying a bilat-
eral filter to the reflectance layer. We discuss such cases in
Section 5.4.

5.2.1 Original Domain [O]

Most of the methods regress the intrinsic components using
either `1 or `2 losses. This strategy is sometimes referred as
Direct Intrinsic [95,117,8,37,79,86,12,74,146], and can be
used to initialize just part of the network [56,114,90].

5.2.2 Gradient Domain [∇]

Inspired by classical Retinex approaches [51,45], which ob-
tain the shading image by first predicting the gradients and
then integrating them with Poisson-like reconstruction, a set
of methods explicitly regress the gradients of the compo-
nents. This loss has been applied only to the albedo [95,
117], or both the albedo and shading layers [8,37,78,74,
146]. The probabilistic version of working in the gradient
domain is presented by the methods that predict the proba-
bility of an albedo gradient (P∇A). Fan et al. [37] comple-
ment a Direct Intrinsic network with a Guidance Network
that is trained to predict binary albedo edges emulating the
response of applying a L1 flattening [11], method used as
ground truth. Similarly, Ma et al. [86] explicitly predict a
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soft assignment mask with the probability of an albedo edge
which, unlike before [37], is trained using the ground truth
albedo and not a flattened version of it.

5.3 Self-Supervision: Learn from the Image Formation
Model

There are several problems that make a fully supervised
approach with explicit labels insufficient: First, it is not
determined how perceptual differences will be distributed
between the different intrinsic components. Second, there
is no guarantee that the reconstructed image from the in-
ferred components will exactly match the input. Finally,
full regression methods require a huge amount of labeled
data in order to generalize reasonably. In this context, self-
supervised strategies formulated as the Render Loss or the
Image Formation Loss have evolved to address these limi-
tations. The key of these strategies is to introduce, at train-
ing time, per-pixel reconstruction of the input image as an
additional signal to guide the learning process. This op-
eration can be done for each single image of the training
dataset (Single-Image Consistency), or across images for
multi-image datasets with relative constraints (Multi-Image
Consistency). Thus, it is critical to perform this reconstruc-
tion efficiently, as it has to be performed thousands of times
during training. We discuss the trade-offs of choosing an im-
age formation model in Section 3 and recent trends that al-
low more expressive models in Section 9. Here we assume
that reconstructing the image from a set of intrinsic parame-
ters can be done in a negligible amount of time.

5.3.1 Single-Image Consistency [SVC]

One of the most critical decisions in the problem of single
image inverse reconstruction is to choose the model that
should reconstruct the scene. As discussed in Section 3,
there is a trade-off between the desired complexity of the tar-
get scene –geometry, material, illumination–, and the model
complexity. For this reason, most of the methods dealing
with arbitrary scenes choose simple formulations, either the
intrinsic diffuse or intrinsic residual, with limited number of
parameters that can be evaluated in real time. The intrinsic
diffuse model receives as input the albedo and shading im-
ages, which, when multiplied together, reconstruct the input
image [25,78,74,79,139,86,12,74,8]. The intrinsic resid-
ual has an additional parameter to capture the specular re-
flections and other light effects that do not belong to the dif-
fuse behavior of light [90,114]. Regardless of the inverse
model and the internal architecture used to capture the inter-
mediate steps of the physics of the image formation process
(more details in Section 3 and Section 6), reconstructions
losses guarantee that the estimated components will be able
to reconstruct the input image.

5.3.2 Multi-Image Consistency [MIC]

One important characteristic of the diffuse albedo of the ma-
terials is that its value remains constant despite variations of
other scene properties such as the illumination or the view
angle. This property has been exploited as an extra form of
supervision by leveraging existing datasets which might not
be specifically collected for the purpose of intrinsic decom-
position and lack of explicit labels.

Time-lapse sequences, i.e. sequences of images of a
static scene with varying illumination, have been widely
used for years as input to estimate the intrinsic components.
Weiss et al. [136] learn from the data that shading images
of outdoor scenes convolved with a derivate filter are sparse,
and apply it as a prior to estimate the intrinsic components.
Sunkavalli et al. [123] additionally decomposed the scene
into shadows, shading and reflectance under the assump-
tion of clear-sky illumination. Later on, Laffont et al. [68]
used the albedo invariance to constrain the decomposition
within a classical optimization framework. Multi-view se-
quences contain the same scene under different perspectives
or viewpoints. This kind of datasets have been mostly gath-
ered with the purpose of 3D reconstruction, although occa-
sionally used within the context of intrinsic decomposition.
The method of Laffont et al. [69] used online photo collec-
tions as input to guide the decomposition, leveraging cues
from partial 3D reconstruction. Duchene et al. [35] further
provide a full 3D model of the scene enabling relighting
applications of outdoor scenes. As opposed to the methods
reviewed in this survey, which leverage these datasets for
training only, these approaches require as input the whole
sequence of images to decompose a single view of the scene.

The key idea of Multi-Image Consistency is to com-
bine different estimations for reflectance and shading im-
ages taken from the same sequence but from different im-
ages of the sequence. The most frequent approach is to com-
bine these cues with fully supervised training [12,86]. Li
et al. [79] propose the only method that not requiring any
explicitly labeled data for training but heavily relying on
heuristic priors (as described in the next section). Finally,
Yu et al. [139] are the first to use a multi-view stereo dataset
which contains rich variations in illumination to train a sin-
gle image inverse method, capable of recovering albedo,
normals and two spherical harmonic lighting coefficients.
The network is mainly trained in a self-supervised manner
by cross-projecting the views using depth maps and camera
projection matrices, imposing coherency in the reconstruc-
tion and in the inferred albedo, as previous methods do [79,
86,12].
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5.4 Priors

Priors are the existing beliefs about a problem. In classical
non-learning based approaches, the priors about each intrin-
sic component were, first, observed from the data and then
modeled as hand-crafted image heuristics, taking into ac-
count each phenomena independently. For example, it was
observed that under natural daylight and for narrow-band
camera sensors, pixels with the same reflectance form a sin-
gle line in logRGB space. Such observation was used, for
example, to identify shadows boundaries [38]. An extensive
overview of these priors and assumptions from a classical
perspective is presented in Bonneel et al. [14]. Using deep
learning architectures has deemed the use of such priors un-
necessary in the majority of situations, as they are now im-
plicitly learned by the deep model during training. However,
due the complexity of the inverse reconstruction problem,
some of these priors have proven to be still useful nowa-
days. In the following we focus on these heuristic priors, as
well as present an different approach to learn them from the
data.

5.4.1 Albedo is Piece-wise Flat [Af]

Observing that the human visual system perceives colors lo-
cally and constantly with independence of the illumination
conditions, the Retinex theory [71] was fundamental for the
development of the most popular computational prior on the
albedo, which assumes that it is piece-wise flat, of high fre-
quency, and sparse [15,11]. In a deep learning formulation,
this prior can be applied in two ways: First, as an additional
loss term that applies to the albedo only, being the L1 loss
the most natural way to impose such constrain [79,78,86,
25]. Second, as an explicit filtering operation applied over
such component to guide the learning process in a more
aggressive way. In the latter case, the l1 flattening algo-
rithm [11] or different variations of the bilateral filter [41,
105,129] have been the most popular and successful strate-
gies [12,25,37,97].

5.4.2 Albedo is Sparse [Asp]

In order to reduce the complexity of the problem, previous
work relied on two strategies also related to the appearance
of the albedo component. First, assuming that similar chro-
maticities values of the input image are likely to have the
same albedo values, and second, that the amount of differ-
ent albedos within a natural image is sparse [40,10,116]. Yu
et al. [139] explicity take into account the former by apply a
pixel-wise weighted penalty according to chromaticity val-
ues of the input image. The latter was implicitly considered
by Cheng et al. [25], who use a deep perceptual loss in order
to preserve textured details [59].

5.4.3 Shading is Smooth [Ssm]

Also derived from Retinex, and from the assumption of
convex and smooth 3D geometries, this prior assumes that
smooth image variation are mostly due to the interaction of
light with a continuous smooth surface [51]. Existing work
has modeled it with the `1 or `2 norms [25,78], or minimiz-
ing second-order shading gradients [86].

5.4.4 Data-driven Priors [Data]

In a learning-based approach, the priors are directly learned
from the available data as probability distributions. In a
fully-supervised setup, the most common way to leverage
labeled data is by feeding the network with one image along
with its corresponding intrinsic components. After enough
data and iterations of the training process, the deep neural
network will have learned an internal and coupled implicit
representation of each of the intrinsic components. An al-
ternative way to use labeled data for training was proposed
by Liu et al. [84]. They present a deep network architecture
that do no require aligned relationships between the intrin-
sic components and the input image in order to learn the
prior distribution of each of them. Instead, it feeds in the
network with independent sets of images of each intrinsic
component. In this regard, the prior information is given by
the actual data, and the work of understanding the unique
features of each component is a learning task.

6 Deep Neural Network Architectures

In the previous section, we discussed the problem of deep in-
trinsic decomposition from a learning formulation perspec-
tive. The design of the deep neural network architecture that
is used to learn to decompose shading and reflectance is also
important, as different network architectures are biased to-
wards finding solutions of different characteristics. The neu-
ral network architecture categorization proposed herein is
summarized in Table 2. In this section, we will describe
the methods according to their network architecture design
choices. We have identified two main groups that have been
used in the literature so far:

- Networks designed to learn pairwise comparisons be-
tween patches of an image (Section 6.1).

- Networks designed to perform an image-to-image
translation, from the input image to either an interme-
diate representation of the decomposition, or to the full
image decomposition (Section 6.2).
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6.1 Pairwise Comparison

(P-W C) As discussed in Section 5.1, early deep intrinsic
decomposition methods relied on sparse local judgments of
either reflectance or shading. Some methods proposed deep
architectures that learned to solve that exact problem: given
two patches of an image, find their relative magnitude of
lightness. Narihira et al. [96] fine-tune an Alexnet network
[67] pre-trained on Imagenet [26], and use its last fully-
connected layer as a feature descriptor vector of the input
image. To compare the relative lightness of two patches of
images, they perform ridge-ranking regression using their
two feature vectors as input. Other methods argue that using
only local patches does not provide the model with enough
information, as the context of the whole image is lost. Zhou
et al. [147] propose a three-stream deep convolutional ar-
chitecture that performs the relative lightness prediction by
combining –inside a shared vector– the features extracted
of three images: the two patches and the global input im-
age. This vector is enriched with the spatial coordinates of
the two patches. A set of fully connected layers uses this
shared vector to predict the relative lightness. Similarly, Zo-
ran et al. [149] propose a multi-stream convolutional archi-
tecture that receives both patches, the global image, as well
as masks for both patches, a bounding box and a region of in-
terest image. The predictions of the convolutional networks
within the architecture are then aggregated in a feature vec-
tor, used by a block of fully-connected layers to perform the
relative lightness prediction.

6.2 Image-to-Image Translation

Instead of relying on pairwise comparisons between patches
of images, many methods perform a direct prediction of ei-
ther the shading, the reflectance, or both maps, in an end-
to-end fashion. This type of framework reduces the amount
of post-processing needed to complete the intrinsic decom-
position, and are more easily integrated with other differ-
entiable modules (e.g. a differentiable render, differentiable
filtering layers, etc.), which may help increase their learning
capabilities. We have divided those image-to-image trans-
lation networks into three groups, depending on how they
learn the mapping between input image and intrinsic de-
composition, from a network architecture perspective. As
we will see in Section 6.2.1, earlier methods rely on a simple
set of connected convolutional layers to solve this problem,
without the use of any skip or mirror connections. Previ-
ous work [54,111,99] show that the use of skip connections
between layers that represent features at different scales is
helpful for preserving rich details on the output maps. Those
skip connections can be included in encoder-decoder archi-
tectures (Section 6.2.2) or using residual connections (Sec-
tion 6.2.3).

6.2.1 Baseline Methods

(B I2IT) Some methods propose a deep architecture similar
to AlexNet [67] or VGG-16 [119], which are comprised of
a set of convolutional layers, followed by a block of fully-
connected layers. Such is the case of the architecture in Ko-
vacs et al. [64], where they use a VGG network (trained on
Image-Net) and add to it 3 fully-connected layers, which
help complete their shading prediction. The use of fully-
connected layers is limiting, as it forces the input image
to have some specific dimensions. Consequently, multiple
methods use only convolutional layers for their predictions.
Nestmeyer et al. [97] propose a fully-convolutional architec-
ture, which outputs a reflectance intensity prediction, then
transformed to reflectance and shading maps using differen-
tiable operations. The use of a fully-convolutional architec-
ture is also proposed in Narihira et al. [95]. Their method
performs directly the decomposition estimation by combin-
ing two networks that process the input image at different
scales.

6.2.2 Encoder-Decoder Networks

(E-D I2IT) A common approach for deep intrinsic im-
age decomposition is to use an encoder-decoder architec-
ture [111]. Those architectures are composed of an encoder,
which translates the input image to a dense, information-
rich, latent space, which is then transformed into another
image by a decoder. In the deep intrinsic images literature,
all the methods that use encoder-decoder architectures trans-
form the input image using a shared encoder, followed by
different decoders for every map they want to predict. To
preserve rich spatial details, they enhance their models with
skip connections between mirrored layers in the encoder and
decoder networks. Learning different decoders for the shad-
ing and reflectance layers is a common approach [78,8,86].
Different enhancements can be performed to this architec-
ture, such as predicting a residual layer [117], an illumina-
tion color [79], an environment map [114], or sharing activa-
tion values between decoders [12]. This type of architecture
can also be used to predict normal [56,139,77,146] or spec-
ular maps [90,77], which can then be processed to estimate
shading.

6.2.3 Residual Networks

(Res I2IT) A different way of preserving rich multi-scale
spatial information is by using residual skip connections
[49]. In a residual block within a convolutional neural net-
work, the input is processed by a set of convolutional and
non-linear activation layers, the result of which is added
to the original input. This helps the flow of gradients dur-
ing back-propagation, and adds spatial details to image-to-
image translation networks. Instead of only using these skip
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connections between mirrored layers, as in the methods in
Section 6.2.2, those skip connections are used in every layer
of the network. Residual networks for intrinsic image de-
composition has been proposed in different fashions. The
model of Fan et al. [37] contains two residual networks: one
which predicts albedo intensities, and other that estimates
the probability of each pixel corresponding to an edge on the
albedo. A fully-convolutional residual network is proposed
in Lettry et al. [74], which predicts the shading of the input
image. The residual network proposed in Cheng et al. [25]
predicts a laplacian pyramid, which is then collapsed into the
decomposition prediction. The architecture proposed in [84]
performs the intrinsic decomposition by leveraging residual
deep latent spaces for unsupervised image domain transla-
tions. It is worth mentioning that the Intrinsic Residual Net-
work (IRN) proposed in Sengupta et al. [114] uses residual
layers as part of their encoder-decoder architecture.

Table 3 Methods presented in the paper and datasets used for Training
(T) and Evaluation (E) purposes. *These datasets contain only isolated
objects. 1 Uses BigTime [79]; 2 Uses MegaDepth [80]; 3 Uses a custom
multi-illumination dataset.

Method Synthetic Real

*S
ha

pe
Net-

D

M
PI Sint

el

CG *M
IT

Int
rin

sic

IIW
/SAW

Othe
r

Narihira et al. [96] TE
Narihira et al. [95] TE TE
Zhou et al. [147] TE
Zoran et al. [149] TE
Kovacs et al. [64] TE
Nestmeyer et al. [97] T
Shi et al. [117] T TE
Janner et al. [56] T
Meka et al. [90] T
Baslamisli et al. [8] T E
Cheng et al. [25] TE TE
Fan et al. [37] TE TE TE
Li et al. [79] TE E/E T1

Yu et al. [139] E T2

Li et al. [78] TE TE/TE
Ma et al. [86] T TE
Bi et al. [12] TE E T3

Lettry et al. [74] TE TE
Sengupta et al. [114] TE TE
Zhou et al. [146] TE TE/TE
Liu et al. [84] TE TE TE E
Li et al. [77] TE TE

7 Evaluation

The quality of an intrinsic decomposition method is chal-
lenging to evaluate. As we argue in Sections 2 and 3, one of

the reasons is that the common assumption about Lamber-
tian materials does not hold in real life. Consequently, the
methods wrongly assign the additional light effects either to
the shading or to the albedo layers. The existence of explic-
itly labeled datasets has facilitated the task, which was done
for a long time by means of visual side-by-side comparisons,
and most of the methods nowadays quantify similarity to the
ground truth using pixel-wise errors metrics. As opposed to
using explicitly labeled datasets, several methods have eval-
uated the algorithmic performance by comparing it with hu-
mans doing the same task. These forms of evaluation have
some trade-offs that we discuss in Section 8. In the follow-
ing, we describe the error metrics along with the reported
performance of each of the reviewed works. We will report
the error metrics for the two most commonly used datasets
to compare different approaches for intrinsic decomposition.

7.1 Pixel-wise Error Metrics

A common way of evaluating image regression models is
through pixel-wise error metrics. In them, the regressed out-
put and the target image are compared pixel-by-pixel, using
a given distance metric, such as the `1 or `2 norms. Pixel-
wise error metrics provide an estimation of the quality of
the output of the model that fails to take into account spatial
information, as individual pixels are considered to be inde-
pendent from their neighboring pixels. Consequently, such
error metrics are not able to provide an estimation of the
perceptual quality of the decomposition, in ways that deep
perceptual-aware metrics are capable of (see [42,53,141]).

Nevertheless, pixel-wise distances have been widely
used in the intrinsic decomposition literature, particularly
for evaluating the quality of the results obtained on the MIT
dataset [45]. Pixel-wise approaches can be used for evaluat-
ing the quality of intrinsic decomposition methods for this
dataset, because it contains densely-annotated data, as dis-
cussed in Section 4. In particular, the most common way of
reporting errors for this dataset has been through the Scale
Invariant L2 Loss, which is a modified version of the `2

norm that ignores the scale of the (log) shading and albedo
maps. When averaging this loss over overlapping windows,
the Local Mean Squared Error (LSME) error can be com-
puted. A more detailed description of these error metrics is
found in [95].

In Table 4, a comprehensive comparison of LMSE met-
rics on the MIT dataset can be found. In particular, we detail
the self-reported average LMSE (averaged between shading
and albedo LSME), for multiple train and test splits. Many
of the methods do not provide information about the test
dataset they are evaluating their method on, so we simply
include the self-reported evaluation metrics, as well as their
own comparisons with other methods in the intrinsic decom-
position literature. As previously discussed, the MIT dataset
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does not contain sufficient data for a deep learning model
to learn from. Consequently, a common approach is to train
the deep learning model using other datasets, and evaluate
on a test split of the MIT dataset. Nevertheless, many meth-
ods further fine-tune their model using a portion of the MIT
dataset, so as to improve the results on its test split. We in-
clude both the baseline and the fine-tuned models’ results
for the methods that perform this fine-tuning on the MIT
dataset. As it can be seen, despite the fact that comparing
methods on this dataset is difficult (because in many cases
the train/test split is unreported), there is a trend towards
smaller LMSE errors on this dataset. This may indicate that
there has been progress on the quality of the deep learning
models and learning frameworks used to train them.

7.2 Human Disagreement Metrics

A different way of evaluating the quality of the intrinsic de-
composition performed by machine learning models is by
comparing the results of their outputs to judgments of hu-
mans that were asked to assess the relative lightness of two
patches of an image. Such approach is helpful for datasets
in which no ground-truth values are available, but for which
sparse humans annotations can be found.

A dataset with these characteristics is the Intrinsic Im-
ages in the Wild (IIW) dataset [10], which is annotated
by humans using relative reflectance values, as described
in Section 4. In the images in this dataset, there are sparse
human annotations of the relative lightness (lighter, darker,
same lightness) of pairs of patches of the image. This dataset
has been widely used on the intrinsic decomposition litera-
ture, and it provides a specific train/test split, which helps
make comparisons fair.

To evaluate the quality of the results on the images in this
dataset, most methods have used the Weighted Human Dis-
agreement Rate (WHDR), which compares the proportion of
human judgments that the models disagrees with, weighted
by the confidence of each pairwise judgments. This error
metric may be more perceptually accurate than using simple
pixel-wise metrics, but it fails to account for the intensity
of the relative lightness values (e.g. how much lighter one
patch of the image is compared to another), and it only mea-
sures the quality of the predictions on a subset of the images,
as annotations are sparse.

A summary of the self-reported WHDR values for the
methods that use the IIW dataset for evaluation can be found
on Table 5. For each method, we provide their self-reported
WHDR value and the values they report for other methods,
as the latter do not necessarily agree with their own self-
reported values. As it can be seen, there is a downward trend
of the error metrics, which indicates that the most recent
approaches, that include self-supervision, better priors, or

more sophisticated neural architectures, may be more suit-
able for performing the intrinsic decomposition task. How-
ever, smaller values on this error metric does not necessar-
ily mean that the decomposition performed by the model is
physically accurate, as we will discuss in Section 8.

8 Discussion

As shown in Sections 5 and 7, recent methods are showing
considerable advances in their ability to learn with non ex-
plicitly labeled datasets, purely computer graphics datasets,
estimate extra scene elements (such as normals or depth),
and take into account more complex light-surface interac-
tions beyond Lambertian material models. Nevertheless, this
progress is not clearly obvious by looking at quantitative
metrics or qualitative results, often showing very different
outcomes for similar error values. In this section, our aim
is to discuss this problem as well as other factors which are
making it challenging to objectively track advances in this
field.

8.1 Outperforming Learning Strategies

As discussed in detail in Section 5, there are several ways to
use datasets and priors to train a neural network to address
the intrinsic decomposition problem. In the following, we
will discuss how the different strategies have been combined
by the most successful methods according to Section 7. In
particular, to show generalization capabilities of the differ-
ent training strategies we will center the discussion around
the methods that show compelling results on the IIW dataset
without using such data for training (see Table 5 †).

According to the WHDR error reported in Table 5, the
method of Bi et al. [12] is the most compelling one. It
combines a twofold strategy using full and self-supervision
(single-image and multi-image), as well as synthetic data
from the MPI Sintel and real data from a custom built
multi-illuminant dataset. It further includes prior informa-
tion for the albedo layer by means of a learned bilateral
filter [6]. The method of Liu et al. [84] is the second best
with a score under twenty. Their approach is fully unsuper-
vised and their key idea is to train latent feature spaces for
a domain-invariant image-to-image translation architecture.
Their models are trained using mostly synthetic images of
ShapeNet, MPI Sintel, and CG dataset, and real from MIT
Intrinsics.

The methods of Yu et al. [139] and Li et al. [77] which
perform similarly also follow a similar approach to encode
and infer explicit illumination using spherical harmonics.
The former by means of a single environment map, while the
latter encodes it in a spatially-varying basis. The idea of en-
coding a spatially-varying material map is further followed
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Table 4 Average LMSE (between shading and reflectance maps) reported for the MIT dataset [45], for multiple train/test splits. We only show the
results for each paper’s best-performing method. Many authors provide the results of their deep learning model with and without fine-tuning their
weights on a training set of the MIT dataset. We include both results both results for fairness when comparing methods. ∗ [95] also splits the test
set by objects, instead of by images, as done in [5]. † These methods are all evaluated using the same train/test split, which is unknown.

Method [5] split Other / unknown split Error reported for other methods

Baseline Finetune on [45] Baseline Finetune on [45] [5] [95] [117] [37]

Narihira et al. [96] 0.0218 0.0234∗ 0.0224∗ 0.0125 0.0218*
Shi et al. [117] 0.0535† 0.0375† 0.0292 0.044 0.0375
Baslamisli et al. [8]
(IntrinsicNet) 0.0226† 0.044 0.0535
Cheng et al. [25] 0.0133 0.0121 0.0125 0.0239 0.0271 0.02
Fan et al. [37] 0.0203 0.0125 0.0271 0.0203
Li et al. [79] 0.0297 0.0292 0.044 0.0372
Ma et al. [86] 0.0105† 0.0063† 0.005 0.0098
Lettry et al. [74] 0.00055 0.00091

Table 5 Reported WHDR error for the IIW dataset [10]. †These methods were not trained on IIW human ratings. ∗ indicate the values obtained
using the test set proposed in [149].

Method WHDR Error reported for other methods

[95] [96] [147] [149] [97] [117] [37] [79] [12]

Narihira et al. [96] 18.1 18.1
Zhou et al. [147] 15.7 18.1 15.7
Zoran et al. [149]* 17.86 17.86
Nestmeyer et al. [97] 17.69 19.95 17.85 17.69
Fan et al. [37] 14.45 19.95 17.85 17.69 14.45
Li et al. [78] 14.8 37.3 19.9 17.7*/19.5 59.4 17.7
Sengupta et al. [114] 16.7 19.9 19.5
Li et al. [77] 15.93/†21.99
Li et al. [79] †20.3 37.3 18.1 15.7*/19.9 59.4 20.3
Bi et al. [12] †17.18 40.9 19.9 17.85 17.69 54.44 17.18
Yu et al. [139] †21.4 37.3 19.9 19.5 59.4 14.5
Zhou et al. [146] 15.2 19.9 19.5 15.4
Liu et al. [84] †18.69 18.1 15.7 14.45 20.3 20.94

by Li’s which leverages a large synthetic dataset for train-
ing. Yu’s method is however trained to obtain a pure diffuse
model using real scenes from MegaDepth dataset for which
normals and albedo maps have been estimated using multi-
view stereo. Finally, the method of Li et al. [79], while
performing similarly to the above one, is the most different
in terms of learning strategy. It relies on a multi-image con-
sistency loss trained using timelapse sequences and smooth-
ness priors for the shading and reflectance layers.

In light of these results, it is worth noting that the
most successful strategy seems to be the combination of
self-supervised learning along with fine-tuning on a spe-
cific dataset or domain. Using priors on the albedo layer by
means of some form of bilateral filter appears to be also an
interesting approach to reduce the amount of training data
required. The main disadvantage of self-supervision for this
problem is that the reconstruction loss needs to be com-
puted efficiently during the progress of training, difficulting
the use of global-illumination based reconstruction losses.
Taking into account global-illumination effects requires the
computation of multiple light bounces that is prohibitive in

this context, which is the reason why the majority of the
methods rely on direct illumination and lambertian materials
models. As discussed in Section 9.3, a promising research
direction in this area involves the use of differentiable ren-
dering techniques.

8.2 Training and Testing Data

It is well known that one of the reasons for the superior per-
formance of CNNs is their capability of capturing local and
global –semantic, object level– features. CNNs are empow-
ered by two main factors: translation invariance and hierar-
chical definition of image-level patterns. Although impor-
tant for several computer vision applications, such as im-
age classification or semantic segmentation, those properties
might be problematic for the intrinsic decomposition prob-
lem.

Semantic dependence during training impacts the gen-
eralization of the method to arbitrary scenes. First, the di-
versity of objects and materials of the scene is given by its
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Fig. 9 Qualitative comparison with an input image from the IIW dataset. Here we compare results between traditional non-learning based solutions,
methods trained or fine-tuned on the IIW dataset, and methods not trained on such dataset. The quantitative error is shown below (errors below 15
on green, above 20 on red). Note that a similar score does not necessarily mean the same qualitative result, as shown by the two methods with green
score. Three interesting effects are highlighted in the input image. We recommend the reader to zoom-in and analyze the results of the method at
these specific areas. Image ID: quiltsalad 3711222369

semantics, so a network trained with a dataset only con-
taining indoor scenes will not likely generalize to outdoor
scenes. In other words, the prior distribution of scene com-
ponents learned by the network will not cover the diversity
of scenes that are present in the real world. A similar prob-
lem is faced with illumination, as the same object and ma-
terial might have a vastly different appearance under differ-
ent lighting conditions, so if the training data is not targeted
at disentangling this relationship, the network will perform
inadequately. Such a limitation is common in most deep in-
trinsic decomposition models. Currently, many of the exist-
ing datasets, either synthetic (SUNCG, CGIntrinsics) or real
(IIW, SAW), used for training and testing contain a major-
ity of indoor scenes. The methods of Sengupta et al. [114]
and Li et al. [77] account for this bias and limit the scope
of the contributions to indoor scenes, as well as capturing an
inverse model of indoor lighting through environment maps.

Testing on data outside the training set (without fine-
tuning) is done by only a few methods: on the MIT

dataset [8], and IIW dataset [12,79,139,84]. As shown in
Table 3, the majority of methods are both trained and tested
using the same dataset. In Figure 9, we can appreciate bet-
ter quantitative performance for methods both trained and
tested on IIW. Nevertheless, the qualitative improvement is
less clearly observable, suggesting that the quantitative eval-
uation done to those algorithms may not account for percep-
tual factors. We discuss this issue next.

8.3 Quantitative Errors as Indicator of Performance

Quantitative error metrics are the common way of measur-
ing the performance of machine learning algorithms. How-
ever, as explained in Section 7, the intrinsic decomposition
problem lacks properly established benchmarks that facili-
tate these comparisons. This is evidenced in Tables 4 and 5
where we can observe a diverse range of reported errors for
the same method. There are two key factors that might be the
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cause of this discrepancy: first, choosing different splits for
the train/test sets, and second, the selection of the reported
error metric when the methods report several errors for dif-
ferent training conditions (e.g. with and without fine-tuning
with a specific dataset).

In the following discussion, we will focus on the IIW
dataset and reported WHDR errors, shown in Table 5, as it
contains the most consistent train/test splits and is the most
common. As it can be seen, there is a consistent trend to-
wards small errors in most recent approaches that include
complex inverse models or network architectures. However,
a smaller error value does not necessarily correlate with a
more physically accurate decomposition. Furthermore, sim-
ilar error values do not necessarily imply similar decompo-
sitions, as we discuss next.

In Figure 9, we show the intrinsic components of one
of the scenes of the IIW dataset. We compare the perfor-
mance among learning-based methods: 1) trained or fine-
tuned with IIW human annotations, 2) methods only tested
on that dataset, and 3) two baseline decompositions that do
not require training data, first, using the luminance channel
as shading component and, second, the decomposition pro-
vided by Bi et al.[11] which relied on a clustering-based
strategy. In terms of quantitative metrics, it is shown that
methods trained on such dataset perform slightly better.
However, the differences between methods with similar er-
ror values are noticeable, for example, for methods trained
on IIW, between Li’s [78] and Fan’s[37], and between Yu’s
[139] and Li’s[79]. At the same time, it seems quite difficult
to qualitatively judge which decomposition is more accu-
rate. It could be argued that Li’s[78], Bi’s [11] and Liu’s
[84] produce the best results as the shading images have
less albedo remnants. Bonneel et al. [14] already exposed
this problem and presented a thorough evaluation of intrin-
sic decomposition methods in the context of image editing
tasks. In their study, none of the existing methods was robust
enough to be used for such kind of operations.

8.4 The Influence of the Material Model

For a long time, intrinsic decomposition methods assumed
Lambertian material models, a design decision which im-
pacted also the variability of the datasets used to train and
evaluate the methods. As we have shown in Section 2, this
significantly simplifies the image formation model, making
the inverse problem tractable from a practical standpoint.
However, the use of these models and datasets have had two
main problems: First, as the model is not rich enough, it will
not be able to inversely reproduce the scene correctly. For
example, looking at the world around us, it is easy to dis-
cover a majority of non-Lambertian surfaces: glasses, plas-
tics, or cloth, among others. Second, if the data used for
training does not contain enough variability and realism, it

will be hard to predict how the methods will behave on real
scenes containing a broad range of material types.

Only a few of the latest methods on intrinsic decom-
position have incorporated more complex material models.
Meka et al. [90] estimate the parameters of a Blinn-Phong
material model, however, as it just deals with single isolated
objects, a fair comparison is unfeasible. The two methods
that deal with general scenes and complex materials are Sen-
gupta et al. [114] that incorporate the specular lobe of Phong
shader, and the method of Li et al. [77] that goes a step
further and estimates the parameters of a spatially-varying
microfacet BRDF. It is worth mentioning that the latter per-
forms reasonably well on the IIW dataset after fine-tuning,
and even provides the error estimation for a model which
wasn’t fine-tuned on such a dataset, suggesting a positive
trend in attempting to generalize to new scenes. In Figure 9,
we observe that while the reflectance layer looks coherent,
the shading layer tends to have artifacts due to the increased
complexity of having to estimate an underlying geometry of
the scene in the form of normals and lighting. These extra
layers (normals and lighting) are nevertheless beneficial to
improve the editability of the scene, for example, to change
illumination or material properties.

When a specular image is tested with a method that as-
sumes a Lambertian model, the specular highlight will be
wrongly placed either completely or partially in either com-
ponent, because the intrinsic diffuse model does not con-
sider such a property of the materials. We can see an ex-
ample of such effect in the television highlight of Figure 9.
Note that all the methods shown in that figure, except Li et
al. [77], follow the intrinsic diffuse model. At the same time,
the Lambertian assumption and the classical intrinsic de-
composition framework has yielded a set of explicitly la-
beled datasets which describe a limited set of Lambertian
materials [45,78].

9 Research Opportunities and Future Directions

Deep learning has changed the way the intrinsic decom-
position problem is addressed, transitioning from some-
times manual or ad-hoc heuristics to implicit rules defined
by the data. Among the data-driven methods reviewed, we
have also observed a trend, from simple regression-based
approaches to recent methods that take into account the
physics of light, for example, modeling complex scene el-
ements: geometry through normals, lighting using spherical
harmonics, or non-lambertian material models using micro-
facets. Nevertheless, the world is highly complex and the
problem of fully reconstructing arbitrary scenes from sin-
gle images is still in an open research area. In the follow-
ing, we discuss, among other topics, how the field can ben-
efit from novel machine learning techniques learn more ef-
ficiently from data, initiatives that promote replicability and
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facilitate comparative evaluation frameworks, as well as the
potential of differentiable and neural rendering.

9.1 Enhancing Generalization

Addressing the problem of intrinsic image decomposition
with a purely data-driven approach is particularly risky: the
content of the dataset guides the variability and amount of
object-material and light-material phenomena that a model
learns to disambiguate. Some approaches have focused on
indoor scenes [10,78,114] dominated by furniture, decora-
tive objects, and certain types of lighting; and others have
limited the scope to a subset of objects within the ShapeNet
dataset [21]. Recently, domain specific datasets have been
created for outdoor road scenes [65], or planar materials
[32]. In contrast to the brute force approach of training a
massive network able to generalize blindly for each do-
main (akin to language models [16]), a more environment-
friendly and scalable approach would include combining
the variety of domain-specific network in a single frame-
work without needing to re-train the whole system, e.g., pre-
classifying the scenes to decide the best networks from an
ensemble, defining accessible APIs, or using networks de-
signed for cross-domain generalization, as proposed by Re-
buffi et al. [107].

Most intrinsic decomposition datasets are smaller than
many popular datasets used in the computer vision literature,
such as ImageNet [26] or COCO [83]. The patterns found
by early layers in CNNs trained on ImageNet have been
found to generalize to multiple computer vision problems,
which could benefit deep learning models applied to the in-
trinsic decomposition problems. Pre-training a CNN on Im-
ageNet using recent unsupervised [43] or self-supervised
learning [24] approaches, then fine-tune such network for
the intrinsic decomposition problem, could provide a solu-
tion for the lack of sufficient training data in the datasets we
discussed.

Besides, generative adversarial networks have proven
successful at generating photo-realistic images in many do-
mains [63]. Recent work on neural rendering and inverse
graphics [142] suggests that those generative models learn
representations in which geometry, light and texture can be
disentangled. Such approaches could be used to generate
new synthetic data samples that allow for larger intrinsic
decomposition datasets. Furthermore, some data points are
more informative than others. Active learning methods [17,
134] could help efficiently generate new (either synthetic or
real) samples that help intrinsic decomposition methods im-
prove their generalization capabilities.

Additionally, most neural network architectures used for
intrinsic decomposition are CNNs. Recent work on atten-
tion mechanisms indicate that traditional convolutional lay-
ers, while powerful, may be limiting the potential of deep

learning for computer vision problems [34,135,58]. Mov-
ing beyond traditional deep CNN architectures may provide
intrisic decomposition algorithms with more sophisticated
inductive biases.

9.2 Evaluation Frameworks

As we have seen in the previous section, existing evalua-
tion metrics [10,45] are not necessarily representative of the
complexity of the real world, neither capture consistently
the actual accuracy and consistency of the decomposition
results (see Figure 9). A particularly interesting opportunity
in this field would include creating a common evaluation
framework (a benchmark, or a challenge), following exist-
ing initiatives in the computer vision and graphics commu-
nities [36,109,1,92].

Creating an evaluation dataset and metrics for the intrin-
sic decomposition problem is challenging, as the intrinsic
components do not freely exist in the nature. We propose
several ideas to facilitate this process. First, leverage hyper-
realistic computer generated scenes, like existing works [78,
14,114] but shaping the data in the form of a benchmark
so that it is easily accessible, and comparable. The main
limitations in this case are the render engine not being able
to reproduce physically complex light phenomena, the cost
of manually creating a variety of scenes of several seman-
tics, as well the required render time. Second, exploit scene
characteristics such as the albedo invariance to illumination
changes. This can be done by leveraging time-lapse or multi-
view scenes ( [80,79]) which are more easily accessible, so
that the final evaluation should take into account the quality
of the reconstruction as well as the invariance of the albedo
layer (mimicking the multi-view learning strategy presented
in Section 5.3). Finally, an ideal dataset for a benchmark
would also include: a variety of scene semantics (indoor,
outdoors, single objects, humans, etc.), the same scene with
multiple illuminations, and complex light phenomena useful
to understand the path of light. Those characteristics might
also serve as intermediate low-level step towards a higher-
level task, e.g., specular layers, scattering effects, a layer for
caustics, or a layer for shadows or occlusion boundaries.
Having these layers would be useful for many other tasks,
such as material editing, object segmentation, or scene com-
positing.

9.3 Beyond Lambert

We have observed in recent works an increasing use of com-
plex illumination models [139,114,146,77], learning from
synthetic datasets that contain both global illumination and
inter-reflections, and some relying on the intrinsic resid-
ual model to enable spatially varying light effects. In these
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methods, light transport simulation has been restricted to
real time techniques like directional lights and spherical har-
monics environments, with limitations in realism at high fre-
quency shadows, occlusions and inter-reflections.

The advent of differentiable ray tracing methods [75,3,
100], have opened a new opportunity to include accurate
light transport path simulations, not only as a costly part
of the error function in the learning process, but also as a
neural network component. Also, the success of the neural
networks to learn parts of the render equation [56,114,77,
146] have a great potential to encapsulate complex lighting
interactions, as shown by neural rendering techniques [126].

The definition of reflectance has also reached increasing
levels of sophistication, the material being no longer just a
base albedo color, but also including specular or Phong co-
efficients in more recent methods[90,77]. However, there is
great potential for improvement. The success in estimating
physically-based material models for flat surfaces [27] or
objects [82] suggest an interesting avenue for future work
in such direction in order to generalize such findings to arbi-
trary scenes. Without a full BSDF model [132] and its mul-
tiple parameters linked to the reflectance layer, some intrin-
sic decomposition applications such as relighting will never
produce realistic results. For instance, the human relight-
ing technique by Kanamori et al. [61] relies on advanced
illumination (spherical harmonics and local occlussion) but
fails to produce realistic relighting because their material
model lacks transmittance and subsurface parameters which
are paramount for the final appearance of human skin and
cloth.

We have barely mentioned several optical phenomena in
this survey: participating media, caustics, subsurface scat-
tering (highly relevant in many materials such as skin, cloth
or liquids) [57], energy transfer between wavelengths (re-
radiance, fluorescence), polarization, interference (irides-
cence), etc. Although we have seen impressive results in
the recent years for problems such as inferring the scatter-
ing parameters an density of volumetric media [100], many
of these effects will require further advances of the inverse
rendering field to be applied to intrinsic imaging.

The challenges ahead include finding an adequate bal-
ance between inverse and neural rendering techniques, and
the right distribution of parameters into multiple intrinsic
layers for each desired application. For instance, editing ap-
plications will required more physically-principled decom-
positions through inverse rendering, so more parameters are
modifiable. On the other side, constrained parts of the prob-
lem, like restricted geometries (faces, bodies), partial light
transport paths, or material shaders, will surely benefit from
neural rendering strategies.

10 Conclusions

Deep learning has changed the way the intrinsic decompo-
sition problem is addressed, transitioning from sometimes
manual or ad-hoc heuristics to implicit rules defined by
the data. In this survey, we have reviewed this transition
discussing learning frameworks, architectures, and datasets
used, putting them in the context of traditional non-learning-
based solutions. Through this revision, we have identified
several problems that might prevent the field to develop fur-
ther: the semantic dependence on the training data, the un-
correlation between current evaluation metrics and qualita-
tive results, and the limitations of the widely used Lamber-
tian material model to capture complex materials and light
phenomena.

In light of the recent advances in neural rendering and
differentiable rendering, we also believe that the intrinsic de-
composition would greatly benefit from a physically-based
–inverse rendering– perspective. For this reason, in this sur-
vey, we also provide a thorough explanation of the physics
of light from a rendering and inverse rendering perspec-
tive, as well as make explicit connections with other inverse
methods that deal with specific domains such as faces, hu-
mans, flat materials, or objects.
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