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Abstract

To enable light fields of large environments to be cap-
tured, they would have to be sparse, i.e. with a relatively
large distance between views. Such sparseness, however,
causes subsequent processing to be much more difficult than
would be the case with dense light fields. This includes seg-
mentation. In this paper, we address the problem of mean-
ingful segmentation of a sparse planar light field, leading
to segments that are coherent between views. In addition,
uniquely our method does not make the assumption that
all surfaces in the environment are perfect Lambertian re-
flectors, which further broadens its applicability. Our fully
automatic segmentation pipeline leverages scene structure,
and does not require the user to navigate through the views
to fix inconsistencies. The key idea is to combine coarse es-
timations given by an over-segmentation of the scene into
super-rays, with detailed ray-based processing. We show
the merit of our algorithm by means of a novel way to
perform intrinsic light field decomposition, outperforming
state-of-the-art methods.

1. Introduction

Plenoptic cameras produce light fields that are typically
dense: after view extraction, the differences in viewpoint of
each view is small. This favors the capture of small scenes,
and mostly covers macro-photography. Camera arrays pro-
duce views by placing a set of cameras in a grid, where
the spacing between the cameras determines how dense or
sparse the capture is. To capture large scenes, the spacing
between the cameras will have to be large, or the number of
cameras would have to be intractably large.

A wide spacing between views, however, results in
sparse light fields, and these tend to be difficult to process,
analyze or edit. In particular, any processing of dense light
fields rely on the derivatives in the angular domain to im-
pose constraints or fit parametric models to extract surface
properties. However, in sparse light fields the estimation of

such derivatives may become unreliable, so that many light
field processing techniques do not perform well on sparse
data.

While sparse light fields could be processed with tech-
niques designed for multi-view data or even for video, light
fields offer some opportunities that make direct application
of multi-view or video processing techniques unattractive.
Specifically, multi-view data, as well as video, tends to be
unstructured and therefore usually requires 3D reconstruc-
tion and navigation through the views. Finally, if we were
to process the light field as a video sequence, we cannot
guarantee angular consistency, and even if we could filter
out the resulting artifacts [9], we would miss an opportu-
nity to gain fidelity by ignoring the geometric information
of the capture device: even if a light field is sparse, the data
would have been captured from equally spaced locations in
space. This feature alone should be sufficient to avoid the
full reconstruction of a 3D point cloud, and thereby offers
advantages in terms of algorithmic complexity.

One type of low-level image processing that often lies at
the heart of more advanced image processing, analysis and
editing, is that of segmentation. Consequently, segmenta-
tion is an important task, and it would therefore be an ad-
vantage to have a good segmentation algorithm that can be
applied to light fields. Of course, it would be possible to
segment each of the views of a light field independently.
Such an approach, however, would ignore the coherence
that exists between views. To create a meaningful segmen-
tation on which to base subsequent processing, a segment
in one view should have a one-to-one mapping with a cor-
responding segment in each of the other views.

Here, we present an algorithm to create a surface color
segmentation of sparse planar light fields that exhibits this
desirable feature, and we show its benefits in the context of
a specific application, namely intrinsic light field decompo-
sition.

In segmentation, often the simplifying assumption is
made that all surfaces in a scene are reflecting light in a
perfectly diffuse (Lambertian) manner. However, the real
world is full of non-Lambertian surfaces such as specular,



Figure 1. Color variations between views due to specular reflec-
tions. From left to right: the light field, the top left view and the
bottom right view. Original scene by guismo, BlendSwap.

glossy, or mirror-like surfaces. The problem with such ma-
terials is that their appearance may change depending on the
point of view of the scene. This problem is particularly crit-
ical for sparse light fields with a large baseline. The same
glossy surface may have different colors in different views
(Figure 1). Thus, if we want to segment the surface of the
object into its different colors, we need to take into account
these differences between views.

The problem to circumvent is that the amount of infor-
mation available in sparse light fields does not allow for rich
surface predictions. In addition, we want the task of light
field segmentation to be automatic, obviating the need for
a user to navigate through the views to fix possible incon-
sistencies. This requires the design of novel techniques that
take into account the structure of sparse light field data in
an efficient and intelligent manner.

To find a good trade-off between the quality of the results
and computational complexity, we shun obvious approaches
which may be based on optical flow [10] or patch-match
algorithms [30]. These would be more appropriate for un-
structured data such as videos or multi-view captures. In-
stead, we rely on an over-segmentation of the light field into
super-rays [22], which can be seen as the light field equiv-
alent of super-pixels [32] in that they represent a coherent
grouping of pixels across views. Further efficiency gains
can be obtained by first calculating a color palette from the
central view, and by then sampling just the central view as
well as the corner views. These samples are then mapped to
the central view, where a dense fully connected Conditional
Random Field (CRF) algorithm [24] performs the color seg-
mentation on the sampled points. The super-ray representa-
tion is then used to propagate the segmentation results to all
the views. The key contributions of our method are there-
fore:

- Use perceptual color palettes as an initial estimation
of the colors of a scene. This provides more robust
estimation than k-means clustering, which is widely
used but requires the number of segments to be set by
the user.

- Segment a light field into distinct surface colors and
specular highlights without user interaction robust to
view-dependent effects.

- Use implicit geometry given by the light field super-
rays and take advantage of the structure of the planar

light fields.
- Use the proposed segmentation to improve the state-

of-the-art of intrinsic decomposition techniques for
sparse light fields.

2. Related Work
Segmentating light fields is a surprisingly underexplored

problem, leaving us with only a few papers to review. To our
knowledge, methods for the segmentation of sparse light
fields currently do not exist at all.

A special case of segmentation is layer segmentation,
whereby a light field is segmented such that objects at dif-
ferent depths are assigned different labels. This is a use-
ful problem to solve, as it allows viewpoint interpolation.
It is, however, a somewhat different problem from the one
we wish to solve, in that different objects/textures in the
same layer may not be distinguished by such methods. An
early method for layer segmentation uses epipolar plane
volumes [12], which can be constructed by stacking a row
or column of views into a volumetric pixel representation.
A cut through such a volume is known as an epipolar plane
image (EPI). Objects will form line structures in EPIs at
an angle that relates to the spacing between the cameras as
well as the depth of the object, making layer segmentation
possible. Such techniques can be extended to consider not
only a row or column of views, but to consider all views
simultaneously [4, 5].

In the context of standard object segmentation, Wanner
and colleagues observe that while segmentation is a difficult
problem, the estimation of disparity in light fields provides
an additional cue that can be leveraged to increase segmen-
tation accuracy [28]. They propose a variational framework
that operates in ray-space, effectively utilizing the structure
of EPIs. For this to work effectively, the disparity between
neighboring views has to be limited, so that the angles of the
lines seen in EPIs do not become too shallow, and can there-
fore be robustly estimated. Maintaining accuracy, therefore,
requires the light field to be dense.

Alternatively, segmentation and co-segmentation may be
based on Markov Random Fields (MRFs), as for instance
practiced in multi-view segmentation [20, 15]. Light fields
tend to be represented by enormous amounts of data, and
this makes direct application of MRFs on light fields in-
tractable. However, a graph structure may be imposed upon
a light field, and MRF-based segmentation may be applied
to the graph representation to produce an interactive and co-
herent light field segmentation algorithm [21].

Note that the most related methods [28, 21, 25] require
user-provided input scribbles to guide the segmentation,
whereas our aim is to provide a fully automatic object seg-
mentation.



Light field L
Image plane Ωxy

Sensor plane Πuv

Number of views m× n
View Lij

Reference view Luc,vc

Key views L′ = {L00,Lm0,Lucvc ,L0n,Lmn}
Ray r = (x, y, u, v)

Super-ray p
Set of all super-rays P(L) = {p}

Segment of a ray φ(r)
Color palette:

set of CIELab colors
P(Lucvc ) = {α0, α1, ..., αk}

Label x
CIELab color of a label α(x)
Color channel of a label αc(x), c ∈ {L, a, b}

Energy for the CRF E
Feature vector of a ray f(r) = [x′, y′, L, a, b]

Label compatibility τ(i, j)
Unique segments

per super-ray φu(p)

Color coherence βp

Fuzziness per
super-ray and segment λp(ck)

Fuzziness ρp

Edge weights wi,k

Table 1. Notation

3. Method

We take as input a light field L(x, y, u, v), represented
with the two-plane parametrization on ray space, where a
light ray r = (x, y, u, v) ∈ L passes through two parallel
planes: the sensor plane Πuv , and the virtual camera plane
or image plane Ωxy . We denote as Lij(x, y) or Lij the slice
or view of the light field that cuts the sensor plane at the
coordinates (u = i, v = j). We define the reference view
of the light field as Lucvc

with uc = bm2 c and vc = bn2 c
for a sensor plane of size m × n. Table 1 summarizes the
notation of the paper.

An overview of the method is shown in Figure 2. Our
goal is to find a set of segments Φ = {ck} with coherent
surface color across the multiple views of the light field.
The first step is to select the key views L′. In this case, for
the key views we choose the extrema and the reference view
of the light field L′ = {L00,Lm0,Lucvc ,L0n,Lmn}, since
they cover the highest variability in terms of occlusions and
color variations with view-point changes.

Given the light field, in step 2 we compute the set of
super-rays P(L) = {p} [22]. Each super-ray contains a
group of rays of the same area of the scene with uniform
color. The chosen method produces super-rays with a regu-
lar shape and size. This kind of over-segmentation provides
a soft geometric decomposition of the scene, and has been
used before in the context of image-based rendering [11].
Thus, we use this information as implicit structural cue. We
additionally rely on disparity values as given by the super-
rays and with d(x, y, u, v) we denote the disparity at each
ray of the light field.

Our pipeline also accepts an object mask, which the user
may define in the central view. The mask will be auto-
matically propagated to the remaining views in step 3. In
step 4, we then compute a perceptual and automatic color
palette P(Luc,vc) from the reference view [14]. Given the
color palette P and the key views L′, we use a fully con-
nected dense Conditional Random Field (CRF) [24] to ob-
tain a fine-grained segmentation in step 5. This initial seg-
mentation is further refined using the soft geometry given
by the super-rays (step 6), and propagated to the remain-
ing views (step 7). We use the disparity to reparametrize
all the rays to the central view. Consequently, each ray
of the light field will have new (x, y) coordinates: x′ =
x+(u−uc) d(x, y, u, v) and y′ = y+(v−vc) d(x, y, u, v).

The benefits of this approach are as follows. First, we
implicitly leverage scene geometry thanks to the use of
super-rays. Second, we are able to consider occlusions and
view-dependent effects by analysing the extremal views as
well as the reference view, while keeping computational
complexity low. Finally, we obtain a fine-grained segmen-
tation which would be difficult to obtain with super-rays
alone. In the following, the non-trivial steps 3 to 7 are ex-
plained in more detail.

Step 3: Mask Propagation There are many potential
ways to select an object in a light field and propagate its
selection to the other views [28, 21]. The most straightfor-
ward way given our architecture would be to simply select
the super-rays by means of a user interface. However, given
the variation in size of super rays that may occur at object
boundaries due to occlusions, we perform a few additional
operations for the propagation.

Given a mask for the reference view, we first project
the mask into the super-rays directly using the reference
view as a guide. In this process, as the mask is defined
at the pixel level, some super-rays will be completely se-
lected, and some will be partially selected. For each super-
ray partially selected, we make a decision about the selec-
tion as follows. We build a bounding box with the selected
rays in the reference view. Then, we reparametrize all the
other rays of the super-ray to the reference view and count
the number of rays which lie inside the bounding box. If
the number of points inside the bounding box is greater
than 75% of the size of the super-ray, then the super-ray
is marked as selected. This simple process allows us to dis-
card super-rays which might be erroneously selected due to
aliasing effects at occlusions.

Step 4: Color Palette We start by computing a color
palette P(Luc,vc) = {α0, α1, . . . , αk} by using the non-
parametric method of Delon et al. [14]. This method auto-
matically finds modes in a histogram and has been succes-
fully used for color transfer [16]. Computing a palette is
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Figure 2. Overview of the method. Step 1: Select the extrema and the reference view as key views. Step 2: Compute the super-rays. Step 3:
Optionally propagate the mask given by the user in the reference view of the light field. Step 4: Compute the color palette for the reference
view. Step 5: Color segment the key views using a Conditional Random Field algorithm for the given color palette. Step 6: Process the
segments and merge them according to the soft structure given by the super-rays. Step 7: Propagate the segmentation of the key views to
the remaining views. Application: we show an application of the segmentation to intrinsic light field decomposition.

an alternative to using k-means clustering as most previous
work does [18, 2, 19]. The main advantage is that we do
not need to input the number of segments, and the method
thus enables a palette to be generated while adapting fully
automatically to the number of reflectances of a scene. We
show in Section 4 how the choice of palette affects the color
segmentation. The color palette forms the set of candidate
labels used for segmentation in the following step.

Step 5: Dense CRF over a Sparse Set of Views We pose
segmentation as a discrete labeling problem where for each
ray ri of L′ we aim to find the associated color, or label xi,
among the candidates given by the reflectance palette P ,
such that xi ∈ P . We follow previous work and formulate
the following energy function [2, 3, 6]:

E(x|L′) =
∑
i∈L′

ψu(i) +
∑
i<j

ψp(i, j)

The first term constitutes a unary potential:

ψu(i) =
∑
c∈a,b

|αc(xi)− f c(ri)|

and the second term is the pairwise potential:

ψp(i, j) = τ(i, j) exp

(
−
‖w � (f(ri)− f(rj))‖22

2

)

where the penalty for label compatibility τ(i, j) equals
‖ logα(xi) − logα(xj)‖1 and f(ri) = [x′, y′, L, a, b] is
the feature vector per ray. The color of label xi of a ray is

α(xi), whereby αc(xi) is the value for each color channel.
We use the CIELab color space, so that c ∈ {L, a, b}. Fur-
ther, w = [ω1, ω2, ω3, ω4, ω5] where ωi are the weights for
each feature, which in our experiments are ω1−3 = 0.1 and
ω4−5 = 0.025. Finally, � indicates the Hadamard product.

The unary potential penalizes each pixel that has a
chroma value very different from the chroma of the label,
and the pairwise potential forces points with similar fea-
ture vectors to have similar labels. The penalty is chosen
as the Euclidean difference in CIELab which corresponds
to perceptual differences in color. This problem may be
solved by optimization with the method of Krähenbühl and
Koltun [24].

Step 6: Merging of Segments The previous step pro-
duces a color segmentation of the light field which tends to
be over-segmented, typically due to strong shadows or high-
lights (see Figure 3). Also, color variations due to speculars
might be assigned to different segments in different views
(Figure 4) resulting in incoherent segmentation.

For these reasons we perform further analysis of the light
field to merge segments which correspond to the same sur-
face. They key idea of the merging is that if the boundary
between two segments is fuzzy and their color is similar,
then it is likely that they might have been separated be-
cause of a shadow or a highlight. In that case they should
be merged (see insets of Figure 3). To decide the merging
of two segments, we analyze the boundaries between them
taking the super-rays as reference. We compute two mea-
sures per super-ray: color coherence βp and fuzziness ρp.

Color coherence measures the color variation of the pix-



Segmentation results after Step 5

Segmentation after merging in Step 6

Final segmentationFuzzy edges after step 5

Figure 3. Comparison of segmentation results after Steps 5 and 6.
Note that in Step 6 fuzzy edges are merged, leading to a cleaner
result.
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Figure 4. Segmentation results for Steps 5 and 6. Note that in the
strawberry the segment representing the highlight is highly incon-
sistent between views.

els within the super-ray:

βp = exp

(∥∥[σ (
αL(p)

)
, σ (αa(p)) , σ

(
αb(p)

)]∥∥
2

−0.01

)

where σ(αc(p)) is the standard deviation in color channel c
for the set of rays {ri} inside super-ray p.

Fuzziness measures the spread of the values of each seg-
ment inside the super-ray with respect to its centroid. We
start by measuring fuzziness per segment ck and super-ray

Color coherence Fuzziness Combinedpβ pρ pρpβ

Figure 5. Color coherence and fuzziness measures computed per
super-ray.

p as follows:

λp(ck) =

∑
i∈qk

‖ri − centroid({rm |m ∈ qk})‖22

max (w, h)

w = max
i∈qk

(x′
i)− min

i∈qk

(x′
i)

h = max
i∈qk

(y′i)− min
i∈qk

(y′i)

qk = { i | ri ∈ p ∧ φ(ri) = ck ∧
ck ∈ φu(p) ∧ |ck| > µ |p| }

where φu(p) is the distinct set of segments which are
present in the super-ray, |ck| is the number of rays of seg-
ment ck which are inside the super-ray, |p| is the total num-
ber of rays of the super-ray, and µ = 0.1 for all the results
shown in the paper. Then, we compute fuzziness per super-
ray as:

ρp = max ({λp(ck) | ck ∈ φu(p)})

Once we have these measures per super-ray, we build a
graph G = (V,E) where V is the set of nodes vi which
corresponds to each segment, i.e. V = {vi = ci}; and E is
the set of weighted edges, where two nodes are neighbors if
they are connected in a 4-neighborhood in the image plane
of the light field. The weight wi,k of each edge is given by:

wi,k =
1

2 |B(ci, ck)|
∑

p∈B(ci,ck)

ρpβp

B(ci, ck) = {p | ci, ck ∈ φu(p) ∧ ci �= ck ∧
p ∈ P(L)}

where B is the set of super-rays which intersect with the
boundaries between the segments ci and ck. We merge
nodes if wi,k < 0.02, an empirically selected value which
has been used for all the results shown in the paper. The
resulting values for the measures can be seen in Figure 5
for two examples. In Figures 3 and 4 we show some final
results before and after the segment merging step. Note that
the result of this process is better if done for a single object



Figure 6. Propagation example. Results for all the scenes shown
in the paper are displayed in the Supplementary Material.

rather than a whole scene. As this is a global process, if the
initial segmentation in Step 5 clusters together two different
surfaces with similar reflectance colors, the measures com-
puted for the merging might be inaccurate, as we integrate
the values over non local areas of the image. Further results
are shown in Section 4.

Step 7: Propagation of Segments The previous step
yields a coherent surface segmentation for the extrema and
the central views of the light field L′. However, we still need
to propagate this information to the intermediate views. In-
spired by Ye et al. [29], we use a look-up-table (lut) to
propagate segments values per super-ray. We build a lut
per super-ray which stores segment values indexed by RGB
values. If there are two or more RGB pixels inside a super-
ray with a different segment value, we keep the segment
with the highest occurrence. Figure 6 shows an example
obtained following this approach.

4. Results
As far as we know there is no existing method which can

automatically segment light fields, nor is there any dataset
for evaluation. Thus, in this section we evaluate each part of
the pipeline separately. First, we provide qualitative com-
parisons to measure the impact of using automatic color
palettes against conventional k-means clustering. Then, we
evaluate the robusteness of our algorithm in light fields for
different palette initializations and compare with the state
of the art of light field segmentation from user scribbles.

Palette Initialization We start by measuring how the
choice of the initial palette impact the resulting color seg-
mentation in single images. In Figure 7, right, we apply
Step 5 of the method on the reference view of the light field
varying the way to compute the initial reflectance palette.
We test the automatic histogram segmentation approach of
Delon et al. [14] and k-means clustering with a different
number of clusters (k = 10 and k = 20). We observe
that the results are scene-dependent. For example, still-life

has a larger number of different reflectances than buddha
or horses. Consequently, a low value of k might be insuf-
ficient. On the other hand, the automatic palette provides
a richer representation of the scene (a larger number of re-
flectances) and is adaptable to the complexity of the scene.

Single Image vs. Light Field Segmentation We measure
how using five key views of the light field and the posterior
merging operation as explained in Steps 5 and 6 improves
the coherence of the segmentation for any choice of the ini-
tial palette. This is shown in Figure 7, left. In the same
figure, we also compare against a light field segmentation
method [21] which takes as input a set of user scribbles. Al-
though this comparison is not fair, as our method does not
require user input, it provides some intuition about the per-
formance of the algorithm. Note, however, that our merg-
ing operation that integrates estimations globally works bet-
ter for single objects. The reason is that, occasionally, the
dense clustering of Step 5 group together different surfaces
with the same color. As the merging is a global operation,
this kind of inconsistent grouping prevents merging some
segments. This effect is particularly visible in Figure 8. As
can be seen, the segments of the jar are not merged together
if the scene is globally processed (bottom row), but they are
merged if the jar is processed locally (middle row).

5. Application: Intrinsic Light Field Decompo-
sition

Intrinsic decomposition is generally understood to be the
process of reverse engineering the process of image forma-
tion [23]. In particular, any pixel recorded by a camera sys-
tem corresponds to light having reflected off a surface in a
scene. In its simplest form, intrinsic decomposition splits
each image I into a component representing the reflectance
R of the imaged surface, and a second component S repre-
senting the illumination (or shading) incident upon that sur-
face, so that I = R�S. This is an under-constrained prob-
lem in single images, as well as in light fields (for which
I = L).

In light fields, however, the same scene point is imaged
in different views from somewhat different vantage points.
The broader the baseline of the light field, the more poten-
tial for analysis a light field offers in this respect, even if this
increases sparsity and normally makes analysis difficult. A
robust and coherent sparse light field segmentation method
as described above, however, enables a meaningful intrinsic
decomposition that would be difficult to achieve with exist-
ing methods.

We rely on our robust color segmentation to guide the de-
composition. Then, following previous work [19, 2, 6], we
find a gray-scale shading component s = log(S) by min-
imizing a linear system of equations. As a consequence
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Figure 7. Color segmentation comparison. Left: Input scene and user strokes as used by Hog et al. [21]. Middle: light field segmentation
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Figure 8. For each of the key views, we show the segments before
and after merging.

of having segmented the lightfield, we now have just one
unknown per segment ck, so that we can impose shading
smoothness constraints between pairs of neighboring seg-
ments:

min
s

∑
ck∼cl

(sk − sl)2

where ck and cl are neighboring segments in the image
plane, and the shading components sk (and sl) are com-
puted as:

sk = ik − rk

ik =
1

|ck|
∑
j∈ck

log

(
rRj + rGj + rBj

3

)

Here, rk refers to a reflectance color. Further, ik is the av-
erage value for all the rays within the segment k. This op-
timization can be solved globally in closed-form for the en-
tire light field, as the number of unknowns is significantly
reduced by working with segments instead of rays. Then
the light field’s reflectance image R is computed as a per
pixel and per channel (Hadamard) division: R = L � S.
Note, however, that a better decomposition would be possi-
ble in two ways: 1) by including non-local reflectance con-
strains given by the segmentation [19, 6]; 2) by separating
the segments by checking connected components in the im-
age plane in an 8-neighborhood.

Results Current intrinsic light field algorithms [17, 1]
cannot cope with sparse light fields, so that comparison with
such methods would not produce meaningful results. Our
method, on the other hand, is suitable for both dense and
sparse light fields as we show here and in the Supplementary
Material. As argued in Section 1 and by Garces et al. [17],
intrinsic video decomposition methods [8, 29] are also not
suitable for sparse light field data.

We are, however, able to compare our intrinsic decom-
position against the state-of-the-art intrinsic image decom-
position method of Bell et al. [2], as shown in Figures 9
and 10. Additionally, Figure 9 shows the ground truth de-
composition.

We show in Figure 10 our decomposition only for the
reference view taking the light field segmentation and, sim-
ilar to previous work [19, 2], splitting the segments in image
space as explained before. As we can observe, our decom-
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Figure 9. Intrinsic decomposition result. Note that highlights are wrongly assigned to the reflectance layer in Bell’s solution, and shading
gradients are not smooth.

Bell et al. [2] Our decompositionInput

Figure 10. Comparison of our intrinsic decomposition with Bell
et al. [2]. Our decomposition is done for the reference view only
by splitting the segments in image space. Note that our result has
highlights better associated with the shading component. Scenes
taken from Sabater et al. [27] and Dabala et al. [13]

position for the reference view tends to be more accurate
than the result of Bell et al. for most cases, even though
there is an exception for the girl scene of Figure 10 (top
row). Here, our reflectance result is unbalanced, some areas
are too dark and others too bright. As explained in Section 5
this is due to the lack of global reflectance constraints that
could eventually be incorporated. On the other hand, the
checkered tablecloth exhibits a high level of accuracy.

The decomposition for the entire light field is a bit
coarser since the segments are handled without splitting,
thus, potentially causing inaccuracies when imposing the
shading smoothness constraints. Further segmentation and
intrinsic decomposition results on real scenes are shown in
Figure 11 and in the Supplementary Material.

6. Conclusions

We have presented a method to coherently segment a
light field into different colors, showing results for both real
and synthetic scenes. Our color segmentation leverages the
light field structure robustly and consistently, even in sparse
light fields. In addition, our method deals with view-point

Figure 11. Segmentation and intrinsic decomposition of a real
scene for each of the four corner views as well as the central view
(shown in the middle). From top to bottom: our segmentation re-
sult, intrinsic shading and reflectance.

dependent material changes by means of a structural merg-
ing. The utility of the method was demonstrated in the con-
text of intrinsic light field decomposition, giving superior
decompositions than could be obtained in single images.

Light fields will have to become sparse to enable large
scenes to be imaged and to be efficiently processed. Our
work is an early example of how such processing may be
accomplished. We hope that this work will open new appli-
cations in light field analysis and processing.

As an example, per-object intrinsic image decomposi-
tion could be explored, enabling as the purpose of intrinsic
image decomposition often is image editing [7]. Finally,
recent advances in intrinsic image decomposition, such as
pre-filtering [2, 6, 26, 17] and the inclusion of non-local
texture cues [31, 19] may be combined with our technique,
and could thus further improve intrinsic light field decom-
position results.
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